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Resumen
En este trabajo construimos la máquina sumadora estocástica en la base 2 considerando la matriz de
truncamiento Sn asociada al operador S y estudiamos los valores propios de la matriz Sn actuando en
l∞(N).
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Abstract
In this work we build the stochastic adding machine in base 2 considering the truncation matrix Sn associ-
ated to the operator S and we study the eigenvalues of the matrix Sn acting in l∞(N).

Keywords. Stochastic, adding machine, eigenvalues

1. Introduction. Given a natural number N we can write it, in a unique way, by using the greedy
algorithm as N =

∑k(N)
i=0 εi(N)2i, where (εi)i≥0 are the digits of N in base 2 taking the values 0 or 1.

There exists an algorithm (adding machine) that computes the digits of N + 1. We summarize this process
in terms of a system of evolving equation, introducing an auxiliary variable “carry 1", ci(N), for each digit
εi(N), in the following way:

Put c−1(N + 1) = 1 and

εi(N + 1) = (εi(N) + ci−1(N + 1))mod(2)

ci(N + 1) =

[
εi(N) + ci−1(N + 1)

2

]
where i ≥ 0 and [z] is the integer part of z ∈ R+.

P. R. Killeen and T. J. Taylor [9] built a stochastic adding machine considering an independent, identi-
cally distributed family of random variables {ei(n) : i ≥ 0, n ∈ N} parameterized by the natural numbers i
and n. This family take the value 0 with probability 1−p and the value 1 with probability p. Given a natural
number N we consider the sequences (εi(N + 1))i≥0 and (c

′

i(N + 1))i≥−1 defined por c
′

−1(N + 1) = 1
and for all i ≥ 0
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εi(N + 1) = (εi(N) + ei(N)c
′

i−1(N + 1))mod(2)

c
′

i(N + 1) =

[
εi(N) + ei(N)c

′

i−1(N + 1)

2

]
.

Hence, a number
∑+∞

i=0 εi(N)2i transitions to a number
∑+∞

i=0 εi(N + 1)2i. In a equivalent way, we
obtain a Markov process ψ(N) with state space N by doing ψ(N) =

∑+∞
i=0 εi(N)2i.

Killeen and Taylor [9] study the spectrum of the transition operator S acting in l∞(N). They prove
that the spectrum σ(S) of S is connected to the Julia set of the quadratic map f : C → C defined by
f(z) = (z − (1− p))2/p2.

In particular, an integer with binary representation εn . . . εk0 11 . . . 11︸ ︷︷ ︸
k

transitions to the integer εn . . . εk+11 00 . . . 00︸ ︷︷ ︸
k

with probability pk+1 and an integer with binary representation εn . . . εk 11 . . . 11︸ ︷︷ ︸
k

transitions to εn . . . εk0 00 . . . 00︸ ︷︷ ︸
k

with probability pk(1− p).

In this paper, we consider the truncation matrix Sn associated to the operator S, where (Sn)i,j = Sij

for all 0 ≤ i, j ≤ n and we study the set of eigenvalues, σ(Sn). In particular, we prove:

Theorem 3: Let E = (
⋃∞

k=1σ(S2k))′, where A′ denotes the set of accumulation points of A. Then, the set
E satisfies:

1) If 0 < p < 1, then ∂Jc(f) ⊂ E.
2) If 0 < p < 1/2, then E = ∂Jc(f).
3) If 1/2 ≤ p < 1, then E ⊂ Jc(f).

Theorem 4: The spectrum of the transition operator S acting in l∞(Z) is equal to the point spectrum of S

and it is equal to the Julia set of the quadratic function f(z) =
(

z−(1−p)
p

)2
.

The first section is devoted to define the stochastic adding machine in base 2 by using the idea of
transductors and in the next section we prove some results by considering the truncation matrix, Sn of the
operator S associated to the stochastic adding machine.

2. Transductor and Stochastic Adding Machine. It is know that the addition of 1 in base 2 is given
by a finite transductor onA∗×A∗, whereA = {0, 1} is a finite alphabet andA∗ is the set of finite words on
A. The idea of the adding machine by using tranductors was introduced by Messaoudi-Smania [11]. This
tranductor is composed by two states, an initial state, I , and a terminal one, T . The initial state is connected
to itself by one arrow labeled by (1/0). There is also one arrow going from the initial state to the terminal
one. This arrow is labeled by (0/1). The terminal state is connected to itself by one arrow labeled by (x/x).

Let assumeN = εn . . . ε0. To find the digits ofN+1 let consider the finite path c = (pk+1, ak/bk, pk) . . . (p2, a1/b1, p1)(p1, a0/b0, p0),
where pi ∈ {I, T}, p0 = I, pk+1 = T, ai, bi ∈ A∗.

Figure 1: Transductor of the adding machine in base 2

Furthermore . . . 0 . . . 0ak . . . a0 = . . . 0 . . . 0εn . . . ε0.

Hence N + 1 = ε
′

n . . . ε
′

0, where

. . . 0 . . . bk . . . b0 = . . . 0 . . . 0ε
′

n . . . ε
′

0
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Example 1. If N = 11 = 10112 then N corresponds to the path

(T, 1/1, T )(T, 0/1, I)(I, 1/0, I)(I, 1/0, I).

Hence N + 1 = 11002 = 12.
If N = 13 = 11012 then N corresponds to the path

(T, 1/1, T )(T, 1/1, T )(T, 0/1, I)(I, 1/0, I).

Then, N + 1 = 11102 = 14.

2.1. Stochastic Adding Machine in Base 2. It is possible to generalize this description to construct a
probabilistic transductor Tp, 0 < p < 1, of the stochastic adding machine in base 2 (see [11]) as showed in
the figure 2.1.

FIGURA 2.1. Transductor of the stochastic adding machine in base 2

Example 2. If N = 11 = 10112, then N in the transductor of adding machine, N corresponds to the
path,

(T, 1/1, T )(T, 0/1, I)(I, 1/0, I)(I, 1/0, I).

In the stochastic adding machine we have the following paths:
(a) (T, (1/1, 1), T )(T, (0/0, 1), T )(T, (1/1, 1), T )(T, (1/1, 1−p), I). In this caseN = 1011 transitions

to 1011 with probability 1− p.
(b) (T, (1/1, 1), T )(T, (0/0, 1), T )(T, (1/1, 1−p), I)(I, (1/0, p), I). In this caseN = 1011 transitions

to 1010 = 10 with probability p(1− p).
(c) (T, (1/1, 1), T )(T, (0/0, 1−p), I)(I, (1/0, p), I)(I, (1/0, p), I). In this caseN = 1011 transitions

to 1000 = 8 with probability p2(1− p).
(d) (T, (1/1, 1), T )(T, (0/1, p), I)(I, (1/0, p), I)(I, (1/0, p), I). In this case N = 1011 transitions

to 1100 = 12 with probability p3.

By using the transductor Tp we have the following result.

Proposition 1. Let N be a non-negative integer, then the following results are satisfied.
i. N transitions to N with probability 1− p.

ii. If N = εk . . . ε10, k ≥ 1 (even case), then N transitions to N + 1 with probability p.
iii. If N = εk . . . εt0 1 . . . 1︸ ︷︷ ︸

s

, s ≥ 1, k ≥ t ≥ s + 1 (odd case), then N transitions to N + 1 =

εk . . . εt1 0 . . . 0︸ ︷︷ ︸
s

with probability ps+1 andN transitions toN−2m+1 = εk . . . εk0 1 . . . 1︸ ︷︷ ︸
s−m

0 . . . 0︸ ︷︷ ︸
m

,

1 ≤ m ≤ s with probability pm(1− p).

Proof:
(i) If N = εk . . . ε10 then N corresponds to the path (in the adding machine in base 2)

(T, εk/εk, T ) . . . (T, ε1/ε1, T )(T, 0/1, I).

In the stochastic adding machine in base 2 N corresponds to the following paths:
(A) (T, (εk/εk, 1), T ) . . . (T, (ε1/ε1, 1), T )(T, (0/0, 1 − p), I). In this case N transitions to N

with probability 1− p.
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(B) (T, (εk/εk, 1), T ) . . . (T, (ε2/ε2, 1), T )(T, (0/1, p), I). Hence N transitions to N + 1 with
probability p.

(ii) If N = εk . . . εt0 1 . . . 1︸ ︷︷ ︸
s

, then N corresponds to the path

(T, εk/εk, T ) . . . (T, εt/εt, T )(T, 0/1, I) (I, 1/0, I) . . . (I, 1/0, I)︸ ︷︷ ︸
s

. In the stochastic adding ma-

chine in base 2, N corresponds to the paths.
(A) (T, (εk/εk, 1), T ) . . . (T, (εt/εt, 1), T )(T, (0/0, 1), T )

(T, 1/1, 1), T ) . . . (T, (1/1, 1− p), I)︸ ︷︷ ︸
s

. In this caseN transitions toN with probability 1−p.

(B) (T, (εk/εk, 1), T ) . . . (T, (εt/εt, 1), T )(T, (1/0, p), I)
(I, (0/1, p), I) . . . (I, (0/1, p), I)︸ ︷︷ ︸

s

. In this case N transitions to N + 1 with probability ps+1.

(C) (T, (εk/εk, 1), T ) . . . (T, (εt/εt, 1), T )(T, (0/0, 1), T )
(T, (1/1, 1), T ) . . . (T, (1/1, 1), T )︸ ︷︷ ︸

s−m−1

(T, (1/1, 1− p), I)

(I, (1/0, p), I) . . . (I, (1/0, p), I)︸ ︷︷ ︸
m

. In this case N transitions to

N − 2m + 1 = εk . . . εt0 1 . . . 1︸ ︷︷ ︸
s−m

0 . . . 0︸ ︷︷ ︸
m

with probability pm(1− p).

By using the proposition 1, we build the transition graph,

FIGURA 2.2. Transition graph of the stochastic adding machine in base 2

Observation 1. We can note that the transition graph is self-similar, since it is made up of blocks
repeating themselves in a periodic way.

The transition operator Sp, associated to the transition graph is given by:
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Observation 2.
1. We can verify that the sum of coefficients of every line (resp. every column) of Sp is equal to 1.

Then, the transition matrix, Sp, is a doubly stochastic matrix.

2. We can note that exists a matrix A =

(
1− p p
p(1− p) 1− p

)
that repeats itself infinitely in the

diagonal region.
3. Since Sp is a stochastic matrix, then Sp(l∞) ⊂ l∞. In effect, if v = (vi) ∈ l∞, then |Spv|∞ =

supi∈N |Spvi| = supi∈N

∣∣∣∑∞j=0 Sijvj

∣∣∣ ≤ |v|∞.
4. If p = 1, then the matrix Sp is defined by{

Sij = 1, j = i+ 1
Sij = 0, j 6= i+ 1

Hence we have S

 x0
x1
...

 =

 x1
x2
...

. In this case, the matrix Sp corresponds to the shift

operator. If p 6= 1 we can consider the operator Sp as a stochastic perturbation of the shift
operator.

Theorem 1. (Abdalaoui-Messaoudi [1]) The spectrum of S in l∞(N) is equal to the filled Julia set of

the quadratic function f(z) =

(
z − (1− p)

p

)2

, that is,

σp = {z ∈ C, (fn(z))n≥0 is bounded}

where fn = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

, ∀ n ∈ N.

Observation 3. Consider the transition operator S̃ = (Sp − (1 − p)I)/p. Then S̃ has a period 2 and
the operator S̃2 is decomposed in two transition graphs, one of them acting on even natural number and
the other one acting on odd natural number and every graph is isomorphic to the transition graph of Sp.

Theorem 2. (Abdalaoui-Messaoudi [1]) The operator Sp is defined in the classical Banach space,
C0(N) and lq(N), q ≥ 1. In particular particular, the spectrum of the operator Sp acting in C0(N) (resp.
lq(N), q > 1) is equal to the continuum spectrum of Sp and equal to the filled Julia set of f, Jc(f). On
l1(N), the point spectrum of Sp is empty, the residual spectrum contains a dense and countable subset of
the Julia set, ∂J(f). The continuum spectrum is equal to Jc(f)\σr(S).
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FIGURA 2.3. Transition graph of the stochastic adding machine on even natural numbers

FIGURA 2.4. Transition graph of the stochastic adding machine on odd natural numbers

3. Results. Let consider a natural integer number n and denote Sn the matrix n× n, where

(Sn)i,j = Sij , ∀ 0 ≤ i, j ≤ n

Sn is the truncation matrix of S. σ(Sn) denotes the set of the eigenvalues of Sn.

Definition 1. Let n ∈ N and λ ∈ C be. We define the sequence of complex numbers (qn(λ))n≥0 given
by:

q1 = −1− p− λ
p

, q2n =
1

p
q22n−1 −

(
1

p
− 1

)
, ∀ n ≥ 1

Theorem 3. Let E = (
⋃∞

k=1σ(S2k))′. Then E satisfies the following:
i. If 0 < p < 1, then ∂Jc(f) ⊂ E.

ii. If 0 < p < 1/2, then E = ∂Jc(f).
iii. If 1/2 ≤ p < 1, then E ⊂ Jc(f).

To prove Theorem 3 we need some results.

Proposition 2. Let k ∈ N, then σ(S2k) = {λ ∈ C, q2k(λ) = 0}, where (qn)n≥1 is the sequence
defined above.

Proof: Let λ ∈ σ(S2k), then there exists v = (vi)0≤i≤2k−1 ∈ C2k \ {0} such that (S2k − λI)v = 0.
It is possible to prove that, vi = qiv0, for all 1 ≤ i ≤ 2k − 1 and furthermore,

2k−2∑
i=0

p2k−1,ivi + (1− p− λ)v2k−1 = 0. (1)

On the other hand, let consider the system

(1− p− λ)w0 + pw1 = 0

p(1− p)w0 + (1− p− λ)w1 + p2w2 = 0
...
2k−2∑
i=0

p2k−1,iwi + (1− p− λ)w2k−1 + p2k−1,2kw2k = 0

where w0 = v0.

Thus, we have, wi = vi = qiv0,∀ 1 ≤ i < 2k−1, e w2k = q2kw0 = q2kv0.
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Hence,

0 =

2k−2∑
i=0

p2k−1,ivi − (1− p− λ)v2k−1 =

2k−2∑
i=0

p2k−1,iwi − (1− p− λ)w2k−1

= −p2k−1,2kw2k = −p2k−1,2kq2kv0 = pk+1q2kv0.

Hece, q2k = 0. Therefore σ(S2k) ⊂ {λ ∈ C, q2k(λ) = 0}.

On the other hand, from q2k(λ) = 0 we have (1) is true. Hence we are done.

Lemma 1.

E = {z ∈ C,∃ (wni
)i≥0 ⊂ C, wni

2 - 2 differents such that ĺım
i→∞

wni
= z and fni(wni

) = 0}.

Proof: Let λ ∈ C, then f(λ) = q21(λ). Hence

fn+1(λ) = q22n(λ), ∀n ∈ N (2)

Let z ∈ E, then there is a sequence (wni
)i≥0 ⊂

⋃+∞
k=1σ(S2k) such that ĺımi→∞ wni

= z. For every
i ∈ N there exists ni − 1 ∈ N such that

q2ni−1(wni) = 0.

Hence by (2) we have fni(wni
) = 0.

The other inclusion is clear.

Proposition 3. The following results are true:
i. 1 ∈ ∂Jc(f).

ii. 1 ∈ E.
iii. f(E) ⊂ E.
iv. f−1(E) ⊂ E.

Proof:

i. We have f(1) =

(
1− (1− p)

p

)2

= 1 and |f ′(1)| = |2
p

(1 − (1 − p))| = 2 > 1. Then 1 is a

repulsive fixed point of f and thus 1 ∈ ∂Jc(f).
ii. Let consider the sequence wn defined by

w1 = 1− p, w2 = 1− p+ p
√

1− p, wn = 1− p+ p
√
wn−1, ∀n > 2.

Claim: (wn)n≥0 is convergent and ĺımn→∞ wn = 1. Moreover, fn(wn) = 0, ∀ n ∈ N∗.

In fact: (wn)n≥0 is a increasing sequence andwn ≤ 1, ∀n ∈ N∗. LetL ∈ R such that ĺımwn = L.
We have L = 1 − p + p

√
L, hence f(L) = L. The fixed points of f are 1 and (1 − p)2. Since

(1− p)2 < 1− p ≤ w1, then , L = 1.

On the other hand, we have f(w1) =
(

1−p−(1−p)
p

)2
= 0. Assume that fn−1(wn−1) = 0. We

have, f(wn) = wn−1, for all n ∈ N∗ and by Lemma 1 we deduce 1 ∈ E.
iii. Let z ∈ E, then there is a sequence (wni)n≥0 converging to z and such that fni(wni) = 0. Since

f is continuous, ĺım
i→+∞

f(wni) = f(z).

Letw
′

ni−1 = f(wni
), thenw

′

ni−1 converges to f(z) and furthermore, fni−1(w
′

ni−1) = fni(wni
) =

0. Thus, f(z) ∈ E.
iv. Let z ∈ f−1(E), then f(z) ∈ E. Hence there exists a sequence wni

converging to f(z) and such
that fni(wni) = 0. Since

f(z) =

(
z − (1− p)

p

)2

,
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then there are xni , yni ∈ C such that f−1(wni) = {xni , yni} and therefore

f(xni
) = wni

−→ f(z), f(yni
) = wni

−→ f(z).

We have,

f(xni
)− f(z) =

(
xni
− (1− p)
p

)2

−
(
z − (1− p)

p

)2

=

=

(
xni − z

p

)(
xni + z − 2(1− p)

p

)
converges to zero whenever i goes to +∞.

On the other hand,

xni = ±p√wni + (1− p),

yni
= ∓p√wni

+ (1− p).

Hence

xni
− yni

= ±2p
√
wni
→ ±2p

√
f(z) (3)

Assume that for every subsequence (n
′

i) of (ni) we have neither (xn′i
) or (yn′i

) converge to z.
Then

ĺımxn′i
= −z + 2(1− p) and ĺım yn′i

= −z + 2(1− p) (4)

Hence,
ĺımxn′i

− yn′i = 0 (5)

Case 1. If f(z) 6= 0, then by (3) and (5) we deduce that there exists a subsequence (ni)i≥0 such
that ĺımxni = z or ĺım yni = z.

Assume that ĺım
i→+∞

xni
= z, then fni+1(xni

) = fni(wni
) = 0. Hence z ∈ E and therefore

f−1(E) ⊂ E.

Case 2. If f(z) = 0, then z = 1− p. (6)
Since f(z) ∈ E, then there exists a subsequence wni converging to 0 and such that fni(wni) = 0.
Moreover, f−1(wni

) = {xni
, yni
} and f(xni

) = wni
→ 0.

From (4) and (6), we obtain ĺımxni
= z and ĺım yni

= z.

Putting xni
= x

′

ni+1, we have ĺımx
′

ni+1 = z such that fni+1(x
′

ni+1) = fni(wni
) = 0 and

therefore z ∈ E.

Lemma 2. 0 ∈ Jc(f) if and only if p ≥ 1/2.
Proof: Assume 1/2 ≤ p < 1, then

0 < f(0) =

(
1

p
− 1

)2

< 1,

0 ≤ f2(0) =

(
f(0)− (1− p)

p

)2

< 1,

Carrying on with this procedure, we deduce 0 ≤ fn(0) < 1, for all n ∈ N. Hence the sequence (fn(0))n≥1
is bounded and therefore 0 ∈ Jc(f).

Let suppose p < 1/2, then f(0) > 1. Since σ(S) = Jc(f) ⊂ D(0, 1), then f(0) 6∈ Jc(f) and
therefore 0 6∈ Jc(f).



Messaoudi and Asmat. Selecciones Matemáticas. 04(01): 59-69 (2017) 67

Proposition 4. If p < 1/2, then E
⋂
Jc(f) ⊂ ∂Jc(f).

Proof:

Claim: ∀n ∈ N∗, σ(S2n)
⋂
Jc(f) = ∅.

In effect, assume by absurd that there is an integer number n ∈ N and a complex number z ∈ Jc(f)
such that fn(z) = 0. Since 0 6∈ Jc(f), fm+n(z) = fm(0) goes to infinity when m increase. But since
z ∈ Jc(f), (fm+n(z))m≥0 is bounded, we have a contradiction. Thus, the claim is true.

Hence,

∞⋃
n=1

σ(S2n)
⋂
Jc(f) = ∅. (7)

To prove the proposition we have to show that there is no element z ∈ E
⋂
Jc(f) such that z ∈

int(Jc(f)). In fact, if there is such an element z, then there exists a subsequence (wni
) of 2 to 2 different

elements of
⋃∞

n=1σ(S2n) such that ĺımwni
= z and fni(wni

) = 0.
Furthermore, since z ∈ int(Jc(f)), there is r > 0 such that B(z, r) ⊂ Jc(f). Hence, since ĺımwni =

z, there is a natural integer number N such that for all i ≥ N,wni
∈ B(z, r) ⊂ Jc(f). This is a contradic-

tion with (7). Then we are done.

Demonstration of Theorem 3
i. From items ii. and iv. of proposition 0.3, we have f−n{1} ⊂ E, for al n ∈ N. Hence

⋃+∞
i=0 f

−n{1} ⊂
E = E, because the set of accumulation points is closed. Since 1 ∈ ∂Jc(f), we obtain by item iii. of
Theorem 1.3.1 [12], ∂Jc(f) =

⋃∞
n=0 f

−n{1} ⊂ E.
ii. Assume p < 1/2. Let prove that E ⊂ ∂Jc(f).

Let z ∈ E and suppose that z 6∈ ∂Jc(f). Then, by proposition 0.4, we have z 6∈ Jc(f). Therefore
ĺım

n→+∞
|fn(z)| = +∞.

On the other hand, since z ∈ E, there exists a sequence of complex numbers (wni
)i≥0 converging to

z and such that fni(wni
) = 0, for all i ∈ N.

Since z 6∈ ∂Jc(f), then the sequence of functions (fn)n≥1 is normal in z. Then there is a subsequence

(n
′

i) of (ni) such that fn
′
i converges uniformly to a bounded analytic function g or g = +∞ in some

disk B(z, r) with center z ∈ C and radius r > 0. That is,

∀ε > 0,∃ N ∈ N, ∀ i ≥ N, ∀x ∈ B(z, r), |fn
′
i(x)− g(x)| < ε.

In particular, if x = wn
′
i
, then g(wn

′
i
) converges to 0. But since ĺımwni = z and g is a continuous

function, then g(z) = 0. Thus g is bounded. But this can be truth because ĺım
i→∞

|fni(z)| = +∞. Hence

z ∈ ∂Jc(f) cause |fni(z)| → ∞.
iii. Assume that p ≥ 1/2, then 0 ∈ Jc(f). Hence, for all integer n ∈ N, σ(S2n) ⊂ Jc(f).

Hence,
∞⋃

n=1

σ(S2n) ⊂ Jc(f).

Therefore,

E = (

∞⋃
n=1

σ(S2n))′ ⊂ (Jc(f))′ = Jc(f).

2

Observation 4. For p = 1 we have E = {0} and for p = 0, E = {1}.

Conjecture. We conjecture that for p ≥ 1/2, there exists z ∈ Jc(f) \ ∂Jc(f) such that z ∈ E.

Pictures of E for 1/2 < p < 1:
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Pictures of E for 0 < p ≤ 1/2:
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