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Resumen 

En este artículo, se plantea un algoritmo para aproximar la distancia Geodésica entre los 

puntos   y   de la esfera, mediante la solución numérica de un problema de valor inicial 

asociado al sistema de ecuaciones diferenciales ordinarias de las geodésicas; para lo cual se 

determina una dirección apropiada. 
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Abstract 

In this paper, we proposes an algorithm to approximate the Geodesic distance between points 

        of sphere, through the numerical solution of initial value problem associated with the 

system of ordinary differential equations of the geodesics; for this an appropriate direction is 

obtained. 
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1. Introduction 

The problem of finding the distance between two points on a regular surface S (connected and 

complete), in general it is not easy; since it requires to find the minimal geodesic that joins these 

points. An algorithm called Leap-Frog (Kanya, Noakes, 1997-1998) was developed to 

approximate geodesics; and Noakes in 1998 developed a global algorithm for this purpose. 

In the case of a sphere, without loss of generality, we can consider the unit sphere centered on 

the origin of coordinates, the distance between two points, is found using the maximum 

circumference that passes through these points; since in a sphere the maximum circumferences 

are the geodesics. This distance in the sphere is known as the geodesic distance or the shortest 

arc distance between points (Wesolowsky, 1982). 

In this paper, we obtain a numerical approximation to the geodesic distance, solving a problem 

of initial value associated to the system of ordinary differential equations of the geodesics; 

based on the method developed by Rubio (2015). For this, we obtain a vector that will give the 

direction that will solve the problem of initial value respective. An algorithm is also provided for 

this purpose. 

2. Regular Surfaces. 

In this section we enunciate some results on Differential Geometry, which were taken of the 

book of Do Carmo (1976). 

Definition 2.1. A subset       is a Regular Surface if, for each     , there exists a 

neighborhood    in     and a map            of an open set      onto                       

       such that: 

1.         . 

2.   is a homeomorphism. 

3. For each    , the differential      
     is one-to-one. 

The mapping   is called a parametrization of S; and in coordinates it is given for  

                                            (                    )          . 

Definition 2.2. A nonconstant, parametrized curve         is called parametrized Geodesic 

if: 

                                                        
 

  
(
  

  
   )         ,                                                         (1) 

where 
 

  
  denotes the Covariant Derivative. 

Now, let’s consider a parametrization          , which that            . Also, the 

parametrization induce a base               in the tangent space    , to S at       . 
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Now, let      be a vectorial field tangent along a curve differentiable parametrized        . 

The expressions of field       in the parametrization is: 

                                                        (         )        (         )                              (2)                    

The expressions of covariant derivative of field     , by (2), is: 

 

  
            

        
        

        
          

                                                           
        

        
        

                                   (3) 

 

where the     
               ,are called the Christoffel symbols which are given by:  

   
   

            

        
                           

   
            

        
 

 

                                 
   

       

        
                                         

   
       

        
                                (4) 

 

   
   

            

        
                               

   
            

        
 

Also, the coefficients of the First Fundamental  Form of S in the parameterization X, are given 

by: 

       〈                〉           〈                〉             〈                〉 (5) 

 

If         is parametrized geodesic, its expressions in the parametrization is given by:                                                                            

                                                                            . 

Therefore, the tangent vector is given by: 

                                                        
  

  
       

        
    . 

Using (1) and (3) for      
  

  
   ; its have: 

                                                   {
       

               
     

        

       
               

     
        

                                  (6) 

that is a system of ordinary differential equations of second order.   
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3. Geodesic on    

Consider the unit sphere: 

                                                                                                         (7) 

The upper hemisphere or northern hemisphere is given by: 

                                      
                   √                                (8) 

 

which is the graph of the differentiable function          defined by                                            

                                             √        ,  donde                       . 

 

A parametrization for (8) is given by          
    defined by: 

 

                                                                  (    √       )                                         (9) 

 

 

The coefficients of the first fundamental form (5) are: 

                              
  

                 
  

                   
  

                                   (10) 

 

 

Its derivatives: 

 

                                           

{
 
 

 
        

       

          
                    

    

          

   
        

          
                    

        

          

   
    

          
                    

       

          

                                     (11) 

 

Using (10) and (11), the Christoffel  symbols     
              . are obtained.  

Therefore, the initial value problem associated with the geodesics is: 

                                                      

{
 
 

 
 
       

               
        

        

       
               

        
        

                     

                 
       

                       (12)  

where                . 
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4. Distance on    

Since the Gaussian Curvature of    is       , the formula for find the Euclidean distance in 

the plane does not apply in this case; for that reason, the distance between two points in    , is 

calculated through the Intrinsic distance    of the connected regular surface  ; which is defined 

by: 

                                                              ∫ ‖     ‖           
 

 
                                (13) 

where: 

                                                     [   ]                                                           (14) 

 

In the case of    , the geodesics are maximum circumferences; therefore, the shortest distance 

between any two points of     is measured along a maximum circle passing through them. 

According to (Wesolowsky, 1982), this distance is known as shorter arc distance. 

Mangalica (2005), and Wesolowski (1982), consider the spherical coordinates      , a point 

     is defined by its latitude   and longitude   , and is denoted by         , where          

                                                
 

 
   

 

 
                 . 

Thus, when considering two points                               
 , the shortest length arc 

            , satisfies: 

                                                [                               ]                          (15) 

          [       ] 

which is called (Donnay, 1945) geodesic distance, denoted by          , between the points    

   and   . 

 

5. The Geodesic Direction 

    In this paper we will approximate the distance    or geodesic distance, solving a problem of 

initial value associated to the system of ordinary differential equations of geodesics (12). 

Definition 5.1. The vector                given by (12), which allows to determine the 

geodesic distance, is called Minimal Geodesic Direction. 

Theorem 5.2. Let         
        . A tangent vector     to    

   in    , in the direction of   , 

is given by: 

a)                 , or                                                                                                               (16)   

b)                                                                                                                                  (17) 
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Proof 

As          
 , we denote with              the associated vector radius to              , 

respectively. 

Furthermore, as      , then             are linearly independent; and as in   , the geodesics 

are maximum circumferences, then they are in the plane generated by             

Denoting by: 

     the plane generated by              

      maximum semicircle passing through            

Thus         . Then, the vector cross produc of              

             

Thus, a vector tangent to    
  , which starts from     and is the plane    , is: 

                                                                                                                                            (18) 

 

Let         , then: 

a) If  〈                 〉     , then                  . 

b) If  〈                 〉     , then                   .                                                               

 

Theorem 5.3. Let          
        . The tangent vector                 to    

   in   , given 

by (16) or (17) in coordinates is respectively: 

                                                            {

            √    
    

  

       √    
    

        

               

                                  (19) 

where          (        ). 

Proof 

We only give the proof respect to (16); because the other option is analogous. 

Using the parametrization (9), there are                          in  , such that: 

 

                                                               

{
 

 
                          

   (         √    
    

 )  

   (      √    
    

 )

                                  (20) 

 

 



55                        F. Rubio  and  R. Leon – Selecciones Matemáticas. 03(02): 49-59 (2016)   
 

 

Using (20), we have:          (        ), where: 

                                                           {

     √    
    

    √    
    

 

     √    
    

    √    
    

 

            

                        (21) 

Therefore, from (21), the vector    (         )                 is given by: 

{
 
 

 
           √    

    
 

     √    
    

       

            

 

 

 

The following theorem allows us to find the minimal geodesic direction; which is used in the 

initial condition of the initial value problem (12). 

Theorem 5.4. The minimal geodesic direction              , for the system (12), is given by: 

                                                                  {
          √    

    
 

     √    
    

       
                                   (22) 

 

Proof 

As    
  is the graph of the differentiable function        √       , of theorem (5.3), we 

have: 

{
 
 

 
           √    

    
 

     √    
    

       

            

 

Therefore, the vector               , is given by: 

{
 

           √    
    

 

     √    
    

       

 

Because it is the projection of   (         ) on the coordinate plane XOY. 
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6. Algorithm. 

In this section we developed a algorithm (Rubio, 2015), to approximate the Geodesic distance 

         ,          
   , Obtaining the numerical solution of I.V.P (12). 

1. Input    (         √    
    

 )     (         √    
    

 )       . 

2.    
 

 
                          , 

3. Using (22), calculate: 

              

4.                        

                   
        

5.Solver the I.V.P (12), 

      √                      

   5.1. If            , then 

            Calculate    ,  where     is the distance obtained by the algorithm. 

6.              . 

7.  End 

 

7. Examples. 

   7.1. Find the geodesic distance between points           , given by:     

                              y                       . 

       Let: 

                    approximate distance given by the algorithm. 

                    geodesic distance obtained by (15). 

              Using the algorithm we obtain: 

               

                  
 

 

                 

 

Distance:     

Geodesic 
distance:     

 

Error: |      | 

 
0.7 

 
0.2 

 
0.6856 

 
0.12 

 
0.83 

 

 
0.5447 

 
0.8913 

 
0.8977 

 
0.0064 

       

                    Table Nro. 1.  Comparison between distance     and distance   . 
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                                  Fig. Nro. 1.   Pre-image of the geodesic in the plane, 
                                                      and circle of arrival. 
 
 

 

                                        Fig. Nro. 2. Geodesic from      to    . 

 

 

 

                                             Fig. Nro. 3.  Geodesic from      to    . 



         F. Rubio  and  R. Leon – Selecciones Matemáticas. 03(02): 49-59 (2016)                                  58 
  

7.2 The following table shows results. 

                      Points  on    
       Parameter:  N = 200, tol = 0.01,  h = 4/N 

               

                  
 

 

                 

 
Distance:  

    

Geodesic 
Distance:  
           

 
Error: 

 |      | 

 
0.7 

 
0.2 

 
0.6856 

 
0.12 

 
0.83 

 

 
0.5447 

 
0.8913 

 
0.8977 

 
0.0064 

0.13 0.17 0.9768 
 

0.77 -0.32 0.5520 0.9409 0.9460 0.0051 

0.45 -0.54 0.7113 -0.69 0.55 0.4705 1.8279 1.8471 0.0192 

-0.3 -0.6 0.7416 -0.21 -0.08 0.9744 0.5854 0.5851 0.0003 

0.5 -0.5 0.7071 -0.7 -0.7 0.1414 1.4726 1.4706 0.002 

-0.62 0.43 0.6563 0.39 -0.47 0.7918 1.4957 1.4950 0.0007 

0.0 -0.8 0.6000 0.0 0.9 0.4359 2.0262 2.0471 0.0209 

0.47 0.66 0.5861 0.21 -0.72 0.6614 1.5599 1.5596 0.0003 

0.9 -0.1 0.4243 -0.8 -0.58 0.1536 2.1985 2.2103 0.0118 

-0.5 0.8 0.3317 0.8 0.21 0.5620 1.6183 1.6164 0.0019 

0.49 0.0 0.4359 -0.9 0.0 0.4359 2.2282 2.2395 0.0113 

0.2 0.15 0.9682 0.8 -0.23 0.5542 0.8394 0.8472 0.0078 

-0.2 -0.15 0.9682 -0.8 0.17 0.5754 0.7945 0.8070 0.0125 

0.0 0.0 1.000 0.0 0.98 0.1990 1.3328 1.3705 0.0377 

0.91 -0.1 0.4024 -0.1 -0.9 0.4243 1.3994 1.4003 0.0009 

-0.2 0.85 0.4873 0.33 0.37 0.8684 0.8297 0.8343 0.0046 

 

 

                       Table Nro. 2. Comparison between distance     and distance   .  
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