Modelación en riesgo financiero: aplicaciones con bibliometría y Latent Dirichlet Allocation
DOI:
https://doi.org/10.17268/sciendo.2025.030Palabras clave:
Riesgo financiero, modelación, Latent Dirichlet Allocation, big data, insolvenciaResumen
El presente tiene como objetivo explorar la importancia de la modelación en el riesgo financiero, un aspecto clave para la estabilidad de las instituciones financieras y las empresas en un entorno global caracterizado por incertidumbres económicas. Utilizando herramientas de bibliometría y Latent Dirichlet Allocation (LDA), se analizan los avances recientes en el campo, desde el uso de big data y algoritmos genéticos mejorados hasta la adopción de modelos predictivos avanzados. Este enfoque permite identificar patrones de investigación y tendencias clave, destacando el papel de la colaboración internacional y el crecimiento de la producción científica en la gestión del riesgo financiero. Los resultados subrayan la necesidad de seguir desarrollando modelos más sofisticados para predecir insolvencias y mejorar la capacidad de respuesta ante riesgos financieros en mercados cada vez más interconectados.
Citas
Ahmad, M., Ahmed, Z., Gavurová, B., y Oláh, J. (2022). Financial Risk, Renewable Energy Technology Budgets, and Environmental Sustainability: Is Going Green Possible? 10. https://doi.org/10.3389/fenvs.2022.909190
Chiara, N., y Garvin, M. J. (2008). Variance models for project financial risk analysis with applications to greenfield BOT highway projects. Construction Management and Economics, 26(9), 925–939. https://doi.org/10.1080/01446190802259027
Chow, J. C. K. (2018). Analysis of Financial Credit Risk Using Machine Learning. arXiv: Statistical Finance. https://doi.org/10.13140/RG.2.2.30242.53449
Damayanti, E. S., Manurung, A., y Machdar, N. M. (2023). Financial Risk Management. Formosa Journal of Sustainable Research. https://doi.org/10.55927/fjsr.v2i7.5025
Derviş, H. (2019). Bibliometric analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156–160.
Gennaro, A. (2021). Insolvency Risk and Value Maximization: A Convergence between Financial Management and Risk Management. Risks. https://doi.org/10.3390/RISKS9060105
Gestel, T. V., y Baesens, B. (2009). Credit Risk Management: Basic Concepts: Financial Risk Components, Rating Analysis, Models, Economic and Regulatory Capital. OUP Oxford.
Granados, M. R., Castilla, T. A., García, A. G., y Sánchez, M. T. R. (2011). Estudio bibliométrico de Aula Abierta. Aula abierta, 39(3), 97–110.
Han, J.-H., Ahn, Y.-C., y Lee, I.-B. (2012). A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk. Applied Energy, 95, 186–195. https://doi.org/10.1016/j.apenergy.2012.02.032
Holzmeister, F., Huber, J., Kirchler, M., Lindner, F., Weitzel, U., y Zeisberger, S. (2019). What Drives Risk Perception? A Global Survey with Financial Professionals and Lay People. Microeconomics: Information. https://doi.org/10.2139/ssrn.3374893
Ildefonso, M. V. S., Laureano, R. M. S., y Vasarhelyi, M. (2023). Predictive models of insolvency: A systematic literature review. 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), 1–7. https://doi.org/10.23919/CISTI58278.2023.10211516
Jokhadze, V., y Schmidt, W. M. (2019). Measuring Model Risk in Financial Risk Management and Pricing. Risk Management eJournal. https://doi.org/10.2139/ssrn.3113139
Kang, Q. (2019). Financial risk assessment model based on big data. Int. J. Model. Simul. Sci. Comput., 10, 19500211–195002114. https://doi.org/10.1142/S1793962319500211
Khan, A., Goodell, J. W., Hassan, M. K., y Paltrinieri, A. (2022). A bibliometric review of finance bibliometric papers. Finance Research Letters, 47, 102520. https://doi.org/10.1016/j.frl.2021.102520
Kim, Y. S., Giacometti, R., Rachev, S. T., Fabozzi, F. J., y Mignacca, D. (2012). Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model. Annals of Operations Research, 201(1), 325–343. https://doi.org/10.1007/s10479-012-1229-8
Kolomiiets, Y. Y., y Kochorba, V. (2023). Risk Modeling of Banking Activities. Business Inform. https://doi.org/10.32983/2222-4459-2023-8-138-148
Millo, Y., y MacKenzie, D. (2009). The usefulness of inaccurate models: Towards an understanding of the emergence of financial risk management. Accounting, Organizations and Society, 34(5), 638–653. https://doi.org/10.1016/j.aos.2008.10.002
Mo, T. (2021). Design of international financial risk estimation model based on improved genetic algorithm. Journal of Intelligent and Fuzzy Systems, 1–10. https://doi.org/10.3233/JIFS-189936
Myagkova, T., y Annenkova, V. G. (2020). Development of models for predicting the probability of bankruptcy in the context of business financial security. Russian Journal of Management, 8, 126–130. https://doi.org/10.29039/2409-6024-2020-8-2-126-130
Ouyang, Z., Yang, X., y Lai, Y. (2021). Systemic financial risk early warning of financial market in China using Attention-LSTM model. The North American Journal of Economics and Finance, 56, 101383. https://doi.org/10.1016/j.najef.2021.101383
Pospíšil, J., Matulayová, N., Macháčková, P., Jurníčková, P., Olecká, I., y Pospíšilová, H. (2021). Value-Based Financial Risk Prediction Model. Risks. https://doi.org/10.3390/risks9110205
Razavian, E., Alem Tabriz, A., Zandieh, M., y Hamidizadeh, M. R. (2021). An integrated material-financial risk-averse resilient supply chain model with a real-world application. Computers y Industrial Engineering, 161, 107629. https://doi.org/10.1016/j.cie.2021.107629
Tang, Q., y Tsitsiashvili, G. (2003). Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Processes and their Applications, 108(2), 299–325. https://doi.org/10.1016/j.spa.2003.07.001
Vernon, J. A., Golec, J. H., y Dimasi, J. A. (2010). Drug development costs when financial risk is measured using the Fama–French three-factor model. Health Economics, 19(8), 1002–1005. https://doi.org/10.1002/hec.1538
Voda, A. D., Dobrotă, G., Ţîrcă, D.-M., Dumitrașcu, D., y Dobrotă, D. (2021). CORPORATE BANKRUPTCY AND INSOLVENCY PREDICTION MODEL. Technological and Economic Development of Economy. https://doi.org/10.3846/tede.2021.15106
Wang, W. Y., y Hua, Z. (2014). A Semiparametric Gaussian Copula Regression Model for Predicting Financial Risks from Earnings Calls. En K. Toutanova y H. Wu (Eds.), Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1155–1165). Association for Computational Linguistics. https://doi.org/10.3115/v1/P14-1109
Yang, Q., Wang, Y., y Ren, Y. (2019). Research on financial risk management model of internet supply chain based on data science. Cognitive Systems Research, 56, 50–55. https://doi.org/10.1016/j.cogsys.2019.02.001
Zhang, X., Zhang, T., y Lee, C.-C. (2022). The path of financial risk spillover in the stock market based on the R-vine-Copula model. Physica A: Statistical Mechanics and its Applications, 600, 127470. https://doi.org/10.1016/j.physa.2022.127470
Zhu, L., Li, M., y Metawa, N. (2021). Financial Risk Evaluation Z-Score Model for Intelligent IoT-based Enterprises. Information Processing y Management, 58(6), 102692. https://doi.org/10.1016/j.ipm.2021.102692
Zhu, W., Zhang, T., Wu, Y., Li, S., y Li, Z. (2022). Research on optimization of an enterprise financial risk early warning method based on the DS-RF model. International Review of Financial Analysis, 81, 102140. https://doi.org/10.1016/j.irfa.2022.102140
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Alexander Fernando Haro Sarango, Sara Isabel Cabanillas Ñaño

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.