Efecto de Lecanicillium lecanii y Beauveria bassiana sobre Planococcus citri en condiciones de laboratorio
Resumen
Se evaluó el efecto de Lecanicillium lecanii (Zimm) y Beauveria bassiana (Bals) Vuill sobre Planococcus citri (Risso) en condiciones de laboratorio. Se emplearon hojas de limón que fueron infestadas con 20 ninfas de P. citri y luego fueron inoculados con L. lecanii a las dosis de 106 y 107 conidios/mL con ayuda de un aspersor manual, procediendo de la misma forma con B. bassiana. Los tratamientos fueron distribuidos aleatoriamente. La muerte de las ninfas de P. citri se produjo a las 72 horas después de la aplicación con los siguientes porcentajes de mortandad: 81.5 y 80.0% con L. lecanii, y 78.3 y 85.0% con B. bassiana, a las concentraciones de 106 y 107 conidios/mL, respectivamente (no existe diferencia significativa con los demás tratamientos), aunque sí (p<0,05) con el control que presentó 10.0% de mortandad.
Palabras clave: Lecanicillium lecanii, Beauveria bassiana, Planococcus citri, % de mortandad
Citas
Franco JC, Suma P, Borges da Silva E, Blumberg D, Mendel Z. Management strategies of mealybug pest of citrus in mediterranean countries. Phytoparasitica. 2004; 32(5): 507-522.
Kol-Maimon H, Ghanim M, Franco JC, Mendel Z. Evidence for gene flow between two sympatric mealybug species (Insecta; Coccoidea; Pseudococcidae). PLoS ONE. 2014; 9(2): e88433
Cabaleiro C, Segura A. Field transmission of grapevine leafroll associated virus 3 (GLRaV-3) by the mealybug Planococcus citri. Plant dis.1997; 81: 283-287.
Mani M. Recovery of the indigenous Coccidoxenoides peregrinus and the exotic Leptomastic dactylopii on Planococcus citri in lemon and acid lime orchards. Biocontrol Sci Techn. 1994; 4(1):49-52.
Morandi Filho WJ, Grützmacher AD, Botton M, Bertin A. Biologia e tabela de vida de fertilidade de Planococcus citri em diferentes estruturas vegetativas de cultivares de videira. Pesq agropec bras. 2008; 43(8): 941-947.
Cloyd RA, Dickinson A. Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). J Econ Entomol. 2006; 99(5):1596-604.
Rothwangl KB, Cloyd RA, Wiedenmann RN. Effects of insect growth regulators on citrus mealybug parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae). J Econ Entomol. 2004; 97(4):1239-44.
Afifi Ali, El Arnaouty SA, Attia AR, Abd Alla Ael-M. Biological control of citrus mealybug, Planococcus citri (Risso) using coccinellid predator, Cryptolaemus montrouzieri Muls. Pak J Biol Sci. 2010; 13(5):216-22.
Dinesh AS, Venkatesha MG. Inter- and intraspecific interactions in two mealybug predators Spalgis epius and Cryptolaemus montrouzieri in the presence and absence of prey. Bull Entomol Res. 2014; 104(1):48-55. doi: 10.1017/S0007485313000485
Cadée N, van Alphen JJM. Host selection and sex allocation in Leptomastidea abnormis, a parasitoid of the citrus mealybug Planococcus citri. Entomologia Experimentalis et Applicata. 1997, 83: 277–284. doi: 10.1046/j.1570-7458.1997.00182.x
Reeve RJ; French JV. Laboratory toxicity of pesticides to the brown lacewing Sympherobius barberi. South western Entomol. 1978; 3(2): 121-123.
Barbosa Negrisoli CR, Negrisoli Júnior AS, Botton M, Garcia MS, Bernardi D. Evaluation of efficacy of 18 strains of entomopathogenic nematodes (Rhabditida) against Planococcus citri (Risso, 1813) (Hemiptera: Pseudococcidae) under laboratory conditions. Exp Parasitol. 2013; 134(3):295-8. doi: 10.1016/j.exppara.2013.02.002.
Passaro LC, Webster FX. Synthesis of the female sex pheromone of the citrus mealybug, Planococcus citri. J Agric Food Chem. 2004; 52(10):2896-9.
Zada A, Dunkelblum E, Harel M, Assael F, Gross S, Mendel Z. Sex pheromone of the citrus mealybug Planococcus citri: synthesis and optimization of trap parameters. J Econ Entomol. 2004; 97(2):361-8.
Demirci F, Muştu M, Bora Kaydan M, Ülgentürk S. Laboratory evaluation of the effectiveness of the entomopathogen; Isaria farinosa, on citrus mealybug, Planococcus citri. Journal of Pest Science. 2011; 84(3): 337-342.
Demirci F, Muştu M, Bora Kaydan M, Ülgentürk S. Effects of some fungicides on Isaria farinosa, and in vitro growth and infection rate on Planococcus citri. Phytoparasitica. 2011; 39(4):353-360
Mascarin GM, Pauli G, Lopes RB. Susceptibility of the citrus mealybug, Planococcus citri, to Metarhizium anisopliae. Citrus Res Techn. 2011; 32(3):155-160.
Guaharay F, Chaput P. Control Biológico Ayer Hoy y Siempre. En: Cano E, López JA, Carballo M, Fernández O, Gonzáles L, Gruber AK, y otros. Guaharay F, Carballo M [Editores]. Control Biológico de plagas agrícolas. Managua, Costa Rica: Catie, 2004.
Butt TM, Jackson C, Magan N. Introduction- Fungal Biological Control Agentes: Progress, Problems and Potential. En: Butt TM, Jackson C, Magan N. Fungal as Biocontrol Agentes: Progress, Problems and Potential. London, UK: Cabi Publishing, 2001.
Téllez-Jurado A, Cruz-Ramírez MG, Mercado-Flores Y, Asaff-Torres A, et al. Mecanismos de acción y respuesta en la relación de hongos entomopatógenos e insectos. Rev Mex Mic. 2009; 30: 73-80.
Evans HC, Hywel-Jones NL. Entomopathogenic fungi. In: Ben-Dov Y, Hodgson CJ (eds.), Soft Scale Insects: Their Biology, Natural Enemies and Control, vol. 7B1. New York: Elsevier, 1997.
Cavallazzi G, Prieto A, Ariza R. Evaluation of the entomopathogenic Verticillium lecanii (Zimm.) Viegas in the control of the soft scale Philephedra tuberculosa Nakahara & Gill in the Guanabana (Annona muricata). Agronomy Colombiana. 1998; 15 (2-3), 106–111.
Lo PL, Chapman RB. The role of parasitoids and entomopathogenic fungi in mortality of third-instar and adult Ceroplastes destructor and C. sinensis (Hemiptera: Coccidae: Ceroplastinae) on citrus in New Zealand. Biocontrol Sci and Techn.1998; 8 (4): 573–582.
Evans HC, Prior C. Entomopathogenic fungi. En: Rosen D. (ed.) Armored Scale Insects: Their Biology, Natural Enemies and Control, vol. B1. Amsterdam: Elsevier, 1990; pp.8-15.
Yin FM, Chen QC, Ye Y. Technology study on the control of Oracella acuta by Verticillium lecanii. Forest Sci Techn. 1996; 5: 15–18.
Yin FM, Qin CS, Chen QC. Study on the control of Oracella acuta by Verticillium lecanii. Forest Sci Techn. 2000; 16 (1): 41–44.
Asensio L, Lopez-Llorca LV, Lopez-Jimenez JA. Use of light, scanning electron microscopy and bioassays to evaluate parasitism by entomopathogenic fungi of the red scale insect of palms (Phoenicococcus marlatti Ckll., 1899). Micron. 2005; 36 (2): 169–175.
Yuan SY, Kong Q, Zhang H, Li ZY, Chen B, Zhu CY. Laboratory assessment of the virulence of Verticillium lecanii Viegas to Trialeurodes vaporariorum and Icerya purchasi maskeli. China J. 2007; 32 (1): 111-114.
Maurer P, Couteaudier Y, Girard PA, Bridge PD, Riba G. Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycol Res. 1997; 101(2):159-164.
Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, et al. Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silver leaf whitefly, Bemisia argentifolii. Biol control. 2000; 17:203-217.
Pucheta M, Flores A, Rodríguez S, de la Torre M. Mecanismo de acción de los hongos entomopatógenos. Interciencia. 2006; 31(12):856- 860.
Ment D, Gindin G, Rot A, Soroker V, Glazer I, Barel Sh et al. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia to the tick cuticle. Appl Environ Microbiol. 2012; 76(11):3521-3528.
Pedrini N, Ortiz-Urquiza, Huerte-Bonnet C, Zhang S, Keyhani NO. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol. 2013; 4(24). doi:10.3389/fmicb.2013.00024.
Rocha-Pino Z, Vigueras G, Shirai K. Production and activities of chitinases and hydrophobins. Bioprocess Biosyst Eng. 2011; 34:681-686.
Mnyone L, Kirby M, Lwetoijera D, Mpingwa M, Knols B, Takken W et al. Infection of de Malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effect of concentration, co-formulation, exposure time and persistence. Malar J. 2009; 8:309-320.
Wang Ch, St Leger RJ, Acollagenus protective coat enable Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci. 2006; 103(17): 6647-6652.
Arboleda JW, Delgado F, Valencia A. efecto de la toxina beauvericina sobre Hypothenemus hampei. Manejo integrado de plagas y agroecología. 2003; 68: 71-76.
Hamill, R.L.; Higgens, G.E.; Boaz, H.E.; Gorman, M. The structure of beauvericin, a new desipeptide antibiotic toxic to Artemia salina. Tetrahedron Lett. 1969, 49, 4255–4258.
Grove, J.F.; Pople, M. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia. 1980; 70: 103–105.
Jestoi M. Emerging Fusarium - Mycotoxins Fusaproliferin, Beauvericin, Enniatins, And Moniliformin - A Review. Crit Rev Food Sci. 2008; 48: 21- 49.
Fornelli F, Minervini F, Logrieco A. Cytotoxicity of fungal metabolites to lepidopteran (Spodoptera frugiperda) cell line (SF-9). J Invertebr Pathol. 2004, 85: 74–79.
Leland JE, McGuire MR, Grace JA, Jaronski ST, Ulloa M, Park Y, Plattner RD. Strain selection of a fungal entomopathogen, Beauveria bassiana, for control of plant bugs (Lygus spp.)(Heteroptera: Miridae). Biol Control. 2005; 35: 104–114.
Jegorov A, Sedmera P, Matha V, Simek P, Zahradnickova L, Eyal J. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry. 1994; 37:1301-1303.
Wang B, Kang Q, Lu Y, Bai L, Wang Ch. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci. 2012; 109(4): 1287-1292.
Roberts DW, St Leger RJ. Toxins. En: Roberts DW, St Leger R. Metarhizium spp., Cosmopolitan insect- pathogenic fungi: Mycological aspects. Adv Appl Microbiol. 2004; 54: 13- 17.
Wang L, Huang J, You M, Guan X, Liu B. Toxicity and feeding deterrence of crude toxin extracts of Lecanicillium (Veticillium) lecanii (Hyphomycetes) against sweet potato whitefly, Bemisia tabaci (Homoptera:Aleyrodidae). Pest Manag Sci. 2007; 63:381-387.
Ojeda-Chi M, Rodríguez-Vivas R, Galindo-Velasco E, Lezama-Gutiérrez R, Cruz-Vázquez C. Control de Rhipicephalus microplus (Acari: Ixodidae) mediante el uso del hongo entomopatógeno Metarhizium anisopliae (Hypocreales: Clavicipitaceae). Rev Mex Cienc Pecu. 2011; 2(2): 177-192.