Plant growth promoter collection of Gluconacetobacter diazotrophicus from northern coast of Peru

Johnnel Paredes-Villanueva, J.L. Del Rosario, Mirtha Urcia-Pulido, Julio Zavaleta-Armas

Resumen


The application of plant growth promoting bacteria (PGPB) represents a friendly alternative to the environment, in contrast to the use of chemical fertilizers. Endophytic bacteria can develop inside the plant tissues and directly benefit the plant. Gluconacetobacter diazotrophicus is a versatile bacterium that has been isolated from different plants and possesses different physiological properties that would serve to improve plant development. In this research, five cultures of G. diazotrophicus were isolated from sugarcane samples from the northern coast of Peru. The isolates showed the ability to solubilize phosphates and zinc, produce IAA, and resist salt stress (NaCl 1%). Antagonism evaluations showed that they can inhibit up to 75%, 57%, 40%, 49% and 17% of the development of Fusarium sp., Alternaria sp., Roselinia sp., Lasiodiplodia sp., and Sclerotinia sp., respectively. Inoculation plant experiments were developed by inoculating individual and bacteria mixture. All treatments showed plant growth promotion in sugarcane, but mixture of G. diazotrophicus LASFB 1573, Klebsiella sp. LASFBP 086 and Enterobacter sp. LASFB 009 increased up to 84% and 89% in fresh and dry plant weight, respectively. The results show that the isolates have a high potential as PGPB and could be used later to improve the development of different crops.


Palabras clave


bacteria; biofertilizer; endophytic; biological nitrogen fixation; plant growth promotion bacteria.

Texto completo:

PDF (English) HTML (English)

Referencias


Aguiar, N.O.; Olivares, F.L.; Novotny, E.H.; and Canellas, L.P. 2018. Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ 6: e5445.

Baldani, J.I.; Reis, V.M.; Videira, S.S.; Boddey, L.H.; Baldani, V.L.D. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil 384: 413-431.

Bertini, E.V.; Nieto Peñalver, C.G.; Leguina, A.C.; Irazusta, V.P.; De Figueroa, L.I.C. 2014. Gluconacetobacter diazotrophicus PAL5 possesses an active quorum sensing regulatory system. Antonie van Leeuwenhoek 106: 497-506.

Bhardwaj, D.; Ansari, M.; Sahoo, R.; Tuteja, N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13(1): 66.

Bishnoi, U. 2015 PGPR Interaction: An Ecofriendly Approach Promoting the Sustainable Agriculture System. Advances in Botanical Research, 75: 81-113.

Botta, A.L.; Santacecilia, A.; Ercole, C.; Cacchio, P.; Del Gallo, M. 2013. In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. New Biotechnology 30(6): 666-674.

Bouraoui, F.; Grizzetti, B. 2013. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment. 468-469: 1267-1277.

Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. 2014. Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology 27: 30-37.

Chawla, N.; Phour, M.; Suneja, S.; Sangwaan, S.; Goyal, S. 2014. Gluconacetobacter diazotrophicus: An overview. Research in Environment and Life Sciences 7(1): 1-10.

Chukeatirote, E.; Phueaouan, T.; Piwkam, A. 2018. Screening of rhizosphere soil bacteria for biocontrol of Lasiodiplodia theobromae. Agriculture and Natural Resources 52(4): 325-329.

Delaporte-Quintana, P.; Grillo-Puertas, M.; Lovaisa, N.C.; Teixeira, K.R.; Rapisarda, V.A.; Pedraza, R.O. 2017. Contribution of Gluconacetobacter diazotrophicus to phosphorus nutrition in strawberry plants. Plant and Soil 419(1–2): 335-347.

Gaiero, J.R.; McCall, C.A.; Thompson, K.A.; Day, N.J.; Best, A.S.; Dunfield, K.E. 2013. Inside the root microbiome: Bacterial root endophytes and plant growth promotion. American Journal of Botany 100(9): 1738-1750.

Gillis, M.; Kersters, K.; Hoste, B.; Janssens, D.; Kroppenstedt, R.M.; Stephan, M.P., Teixeira, K.R.D.S.; Döbereiner, J.; De Ley, J. 1989. Acetobacter diazotrophicus sp. nov., a Nitrogen-Fixing Acetic Acid Bacterium Associated with Sugarcane. International Journal of Systematic Bacteriology 39(3): 361-364.

Grobelak, A.; Napora, A.; Kacprzak, M. 2015. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecological Engineering 84: 22-28.

Hernández-Escareño, J.J.; Gabriel Morales, P.; Farías Rodríguez, R.; Sánchez-Yáñez, J.M. 2015. Inoculation of Burkholderia cepacia and Gluconacetobacter diazotrophicus on phenotype and biomass of Triticum aestivum var. Nana-F2007 at 50% of nitrogen fertilizer. Scientia Agropecuaria 6(1): 07-16.

Intorne, A.C.; De Oliveira, M.V.V.; Lima, M.L.; Da Silva, J.F.; Olivares, F.L.; De Souza Filho, G.A. 2009. Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology 191: 477-483.

Jha, B.; Thakur, M.C.; Gontia, I.; Albrecht, V.; Stoffels, M.; Schmid, M.; Hartmann, A. 2009. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European Journal of Soil Biology 45: 62-72.

Kamal, M.M.; Lindbeck, K.D.; Savocchia, S.; Ash, G.J. 2015. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathology 64(6): 1375-1384.

Khamwan, S.; Boonlue, S.; Riddech, N.; Jogloy, S.; Mongkolthanaruk, W. 2018. Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocatalysis and Agricultural Biotechnology 13: 153-159.

Khan, A.L.; Waqas, M.; Kang, S.M.; Al-Harrasi, A.; Hussain, J.; Al-Rawahi, A.; Al-Khiziri, S.; Ullah, I.; Ali, L.; Jung, H.Y.; Lee, I.J. 2014. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. Journal of Microbiology 52(8): 689-695.

Logeshwarn, P.; Thangaraju, M.; Rajasundari, K. 2011. Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Archives of Phytopathology and Plant Protection 44(3): 216-223.

Luna, M.F.; Aprea, J.; Crespo, J.M.; Boiardi, J.L. 2012. Colonization and yield promotion of tomato by Gluconacetobacter diazotrophicus. Applied Soil Ecology 61: 225-229.

Madhaiyan, M.; Saravanan, V.S.; Jovi, D.B.S.S.; Lee, H.; Thenmozhi, R.; Hari, K.; Sa, T. 2004. Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiological Research 159: 233-243.

Meena, V.S.; Meena, S.K.; Verma, J.P.; Kumar, A.; Aeron, A.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A.; Naveed, M.; Dotaniya, M.L. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering 107: 8-32.

Mehnaz, S.; Weselowski, B.; Lazarovits, G. 2006. Isolation and identification of Gluconacetobacter azotocaptans from corn rhizosphere. Systematic and Applied Microbiology 29: 496-501.

Mohamad, O.A.A.; Li, L.; Ma, J.B.; Hatab, S.; Xu, L.; Guo, J.W.; Rasulov, B.A.; Liu, Y.H.; Hedlund, B.P.; Li, W.J. 2018. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus Against Verticillium dahliae. Frontiers in Microbiology 9(May): 1-14.

Muthukumarasamy, R.; Cleenwerck, I.; Revathi, G.; Vadivelu, M.; Janssens, D.; Hoste, B.; Ui, K.; Park, K.; Young, C.; Sa, T.; Caballero-mellado, J. 2005. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Sistematic and Applied Microbiology 28: 277-286.

Muthukumarasamy, R.; Govindarajan, M.; Vadivelu, M.; Revathi, G. 2006. N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiological Research 161: 238-245.

Muthukumarasamy, R.; Revathi, G.; Vadivelu, M. 2000. Antagonistic potential of N2-fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went., a causal organism of red-rot of sugarcane. Current Science 78(9): 1063-1065.

Oliveira, A.L.M.; Stoffels, M.; Schmid, M.; Reis, V.M.; Baldani, J.I.; Hartmann, A. 2009. Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. European Journal of Soil Biology 45(1): 106-113.

Oliveira, A.L.M.; Urquiaga, S.; Döbereiner, J.; Baldani, J.I. 2002. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant and Soil 242: 205-215.

Oliveira, M.M.; Ramos, E.T.A.; Drechsel, M.M.; Vidal, M.S.; Schwab, S.; Baldani, J.I. 2018. Gluconacin from Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria. Journal of Applied Microbiology 125(6): 1812-1826.

Rivas, R.; Velzquez, V.; Valverde, A.; Mateos, P.F.; Martnez-Molina, E. 2001. A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22: 1086-1089.

Rodríguez-Andrade, O.; Fuentes-Ramírez, L.E.; Morales-García, Y.E.; Molina-Romero, D.; Bustillos-Cristales, M.R.; Martínez-Contreras, R.D.; Muñoz-Rojas, J. 2015. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments. Revista Argentina de Microbiología 47(4): 335-343.

Rojas, M.; Manzano, J.; Heydrich, M. 2012. Aislamiento e identificación de Gluconacetobacter diazotrophicus a partir de variedades de caña de azúcar cultivadas en Cuba. Revista Cubana de Ciencias Biológicas 1(1): 29-33.

Dos Santos, S.; da Silva Ribeiro, F.; Sousa da Fonseca, C.; Pereira, W.; Santos, L.A.; Reis, V.M. 2017. Development and nitrate reductase activity of sugarcane inoculated with five diazotrophic strains. Archives of Microbiology 199(6): 863-873.

Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M. C.; Glick, B.R. 2016. Plant Growth-Promoting Bacterial Endophytes. Microbiological Research 183: 92-99.

Saravanan, V.S.; Kalaiarasan, P.; Madhaiyan, M.; Thangaraju, M. 2007. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Letters in Applied Microbiology 44: 235-241.

Saravanan, V.S.; Madhaiyan, M.; Thangaraju, M. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798.

Schultz, N.; Pereira, W.; de Albuquerque Silva, P.; Baldani, J.I.; Boddey, R.M.; Alves, B.J.R.; Urquiaga, S.; Reis, V.M. 2017. Yield of sugarcane varieties and their sugar quality grown in different soil types and inoculated with a diazotrophic bacteria consortium. Plant Production Science (October): 1-9.

Sharma, N.; Sharma, S. 2008. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiological Research 163: 408-413.

Singh, R.P.; Jha, P.; Jha, P.N. 2015. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. Journal of Plant Physiology 184: 57-67.

De Souza, R.; Ambrosini, A.; Passaglia, L.M.P. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38(4): 401-419.

Tabassum, B.; Khan, A.; Tariq, M.; Ramzan, M.; Iqbal Khan, M.S.; Shahid, N.; Aaliya, K. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology 121: 102-117.

Taulé, C.; Mareque, C.; Barlocco, C.; Hackembruch, F.; Reis, V.M.; Sicardi, M.; Battistoni, F. 2012. The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant and Soil 356: 35-49.

Tejera, N.A.; Ortega, E.; González-López, J.; Lluch, C. 2003. Effect of some abiotic factors on the biological activity of Gluconacetobacter diazotrophicus. Journal of Applied Microbiology 95: 528-535.

Tian, G.; Pauls, P.; Dong, Z.; Reid, L.M.; Tian, L. 2009. Colonization of the nitrogen-fixing bacterium Gluconacetobacter diazotrophicus in a large number of Canadian corn plants. Canadian Journal of Plant Science 89(6): 1009-1016.

Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability - A review. Molecules 21(573): 1-17.




DOI: http://dx.doi.org/10.17268/sci.agropecu.2020.01.02

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

           

  

      

            

    

     

   

                             

 

Scientia Agropecuria fue admitida en SCOPUS en noviembre 2019, por lo que los contenidos publicados a partir del 2019 en adelante, serán indizados en esta base de datos. 

 

Licencia de Creative Commons Scientia Agropecuaria, revista de la Universidad Nacional de Trujillo, publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe