Meta-análisis: efecto de la suplementación dietaria de selenio en la concentración tisular en cerdos

Autores/as

  • Jimmy Quisirumbay-Gaibor Doctorado en Ciencia Animal, Escuela de Posgrado, Universidad Nacional Agraria La Molina. Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ciudadela Universitaria, Jerónimo Leiton s/n y Gatto Sobral. Quito-Ecuador. http://orcid.org/0000-0003-1612-8503
  • Carlos Vílchez-Perales Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ciudadela Universitaria, Jerónimo Leiton s/n y Gatto Sobral. Quito-Ecuador. http://orcid.org/0000-0002-4757-527X

DOI:

https://doi.org/10.17268/sci.agropecu.2019.03.07

Palabras clave:

suplementación dietaria, concentración tisular, selenio, inorgánico, orgánico.

Resumen

Se desarrolló un meta-análisis del efecto de la suplementación de selenio sobre la concentración tisular en cerdos. Se utilizaron 13 artículos científicos, que incluyeron 2114 animales. Bajo el modelo de efectos aleatorios se determinó tamaño de efecto, heterogeneidad y meta-regresiones. La suplementación genera una mayor concentración de selenio en riñón (2,51 ppm) y en menor cuantía en sangre (0,151 ppm); músculo (0,189 ppm) e hígado (0,564 ppm) presentan valores intermedios. Adicionalmente el selenio inorgánico ocasionó mayor concentración en riñón (2,74 ppm) y sangre (0,157 ppm), y la forma orgánica permitió concentrar más selenio en hígado (0,568 ppm) y músculo (0,237 ppm). Sin embargo, el efecto no fue consistente entre los estudios el cual es reflejado por valores altos en la prueba de inconsistencia (>72%). La concentración de selenio se ve afectado por el número de repeticiones, animales por unidad experimental, individuos muestreados por unidad experimental y por el nivel de selenio suplementado. De este trabajo se concluye que las fuentes orgánicas e inorgánicas de selenio favorecen la retención tisular del mismo; sin embargo, la concentración de este mineral se ve afectada significativamente por los factores anteriormente mencionados.

Biografía del autor/a

Jimmy Quisirumbay-Gaibor, Doctorado en Ciencia Animal, Escuela de Posgrado, Universidad Nacional Agraria La Molina. Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ciudadela Universitaria, Jerónimo Leiton s/n y Gatto Sobral. Quito-Ecuador.

Carlos Vílchez-Perales, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Ciudadela Universitaria, Jerónimo Leiton s/n y Gatto Sobral. Quito-Ecuador.

Citas

Bax, L. 2016. MIX 2.0 - Professional software for meta-analysis in Excel - Version 2.0 -BiostatXL. Disponible en: https://www.meta-analysis-made-easy.com/

Benstoem, C.; Goetzenich, A.; Kraemer, S.; Borosh, S.; Manzanares, W.; Hardy, G.; Stoppe, C. 2015. Selenium and its supplementation in cardiovascular disease-what do we know? Nutrients 7(5): 3094-3118.

Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. 2011. Introduction to meta-analysis. 1st Edition. John Wiley & Sons. Chichester, United Kingdom. 187 pp.

Brady, P.S.; Brady, L.J.; Parsons, M.J.; Ullrey, D.E.; Miller, E.R. 1979. Effects of riboflavin deficiency on growth and glutathione peroxidase system enzymes in the baby pig. The Journal of nutrition 109(9): 1615-1622.

Burk, R.F.; Hill, K.E. 2015. Regulation of selenium metabolism and transport. Annual review of nutrition 35: 109-134.

Burk, R.F.; Hill, K.E.; Motley, A.K. 2003. Selenoprotein Metabolism and Function: Evidence for More than One Function for Selenoprotein P, 2. The Journal of nutrition 133(5): 1517S-1520S.

Catalá-López, F.; Tobías, A. 2014. Metaanálisis en ensayos clínicos aleatorizados, heterogeneidad e intervalos de predicción. Medicina Clínica 142(6): 270-274.

Chen, J.; Han J.H.; Guan, W.T.; Chen F.; Wang, C.X.; Zhang, Y.Z.; Lin, G. 2016. Selenium and vitamin E in sow diets: II. Effect on selenium status and antioxidant status of the progeny. Animal Feed Science and Technology 221: 101-110.

Chen, J.; Zhang, F.; Guan, W.; Song, H.; Tian, M.; Cheng, L.; Yang, F. 2019. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. Journal of Trace Elements in Medicine and Biology 52: 89-99.

Cochran, W.G. 1954. The combination of estimates from different experiments. Biometrics 10(1): 101-129.

Cunningham, J.G.; Klein, B.G. 2014. Fisiología Veterinaria. 5ta Edición. Elsevier. Barcelona, España. 460 pp.

Dalgaard, T.S.; Briens, M.; Engberg, R.M.; Lauridsen, C. 2018. The influence of selenium and selenoproteins on immune responses of poultry and pigs. Animal Feed Science and Technology 238: 73-83.

Duntas, L.H.; Benvenga, S. 2015. Selenium: an element for life. Endocrine 48(3): 756-775.

Falk, M.; Lebed, P.; Bernhoft, A.; Framstad, T.; Kristoffersen, A.B.; Salbu, B.; Oropeza-Moe, M. 2019. Effects of sodium selenite and L-selenomethionine on feed intake, clinically relevant blood parameters and selenium species in plasma, colostrum and milk from high-yielding sows. Journal of Trace Elements in Medicine and Biology 52: 176-185.

Guyton, A.C.; Hall, J.E. 2016. Fisiología Médica. 13ra Edición. Elsevier. Barcelona, España. 285 pp.

Hao, S.; Hu, J.; Song, S.; Huang, D.; Xu, H.; Qian, G.; Huang, K. 2016. Selenium alleviates aflatoxin B1-induced immune toxicity through improving glutathione peroxidase 1 and selenoprotein S expression in primary porcine splenocytes. Journal of agricultural and food chemistry 64(6): 1385-1393.

Higgins, J.P.; Thompson, S.G. 2002. Quantifying heterogeneity in a meta‐analysis. Statistics in medicine 21(11): 1539-1558.

Hu, C.H.; Li, Y.L.; Xiong, L.; Zhang, H.M.; Song, J.; Xia, M.S. 2012. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Animal feed science and technology 177(3-4): 204-210.

Jiang, J.; Tang, X.; Xue, Y.; Lin, G.; Xiong, Y.L. 2017. Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork. Meat science 131: 99-106.

Jlali, M.; Briens, M.; Rouffineau, F.; Geraert, P.A.; Mercier, Y. 2014. Evaluation of the efficacy of 2-hydroxy-4-methylselenobutanoic acid on growth performance and tissue selenium retention in growing pigs. Journal of animal science 92(1): 182-188.

Kelly, M.P.; Power, R.F. 1995. Fractionation and identification of the major selenium containing compounds in selenized yeast. Journal for Dairy Science 78(Suppl 1): 237.

Ku, P.K.; Ely, W.T.; Groce, A.W.; Ullrey, D.E. 1972. Natural Dietary Selenium, α-Tocopherol and Effect on Tissue Selenium. Journal of animal science 34(2): 208-211.

Ku, P.K.; Miller, E.R.; Wahlstrom, R.C.; Grace, A.W.; Hitchcock J.P.; Ullrey, D.E. 1973. Selenium supplementation of naturally high selenium diets for swine. Journal of animal science 37(2): 501-505.

Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. 2014. Selenoproteins: molecular pathways and physiological roles. Physiological reviews 94(3): 739-777.

Li, J.L.; Sunde, R.A. 2016. Selenoprotein trans-cript level and enzyme activity as biomarkers for selenium status and selenium requirements of chickens (Gallus gallus). PLoS One 11(4): e0152392.

Lisiak, D.; Janiszewski, P.; Blicharski, T.; Borzuta, K.; Grześkowiak, E.; Lisiak, B.; Hammer-meister, A. 2014. Effect of selenium supplementation in pig feed on slaughter value and physicochemical and sensory characteristics of meat. Annals of Animal Science 14(1): 213-222.

Liu, Z.; Qu, Y.; Wang, J.; Wu, R. 2016. Selenium deficiency attenuates chicken duodenal mucosal immunity via activation of the NF-κb signaling pathway. Biological trace element research 172(2): 465-473.

Mahan, D.C. 1985. Effect of Inorganic Selenium Supplementation on Selenium Retention in Postweaning Swine. Journal of animal science 61(1): 173-178.

Mahan, D.C.; Brendemuhl, J.H.; Carter, S.D.; Chiba, L.I.; Crenshaw, T.D.; Cromwell, G.L.; Kim, S.W. 2005. Comparison of dietary selenium fed to grower-finisher pigs from various regions of the United States on resulting tissue Se and loin mineral concentrations. Journal of animal science 83(4): 852-857.

Mahan, D.C.; Cline, T.R.; Richert, B. 1999. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. Journal of Animal Science 77(8): 2172-2179.

Mahan, D.C.; Moxon, A.L. 1978. Effects of adding inorganic or organic selenium sources to the diets of young swine. Journal of Animal Science 47(2): 456-466.

Mahan, D.C.; Parrett, N.A. 1996. Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. Journal of Animal Science 74(12): 2967-2974.

Mahan, D.C.; Peters, J.C. 2004. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. Journal of animal science 82(5): 1343-1358.

Marin-Guzman, J.; Mahan, D.C.; Chung, Y.K.; Pate, J.L.; Pope, W.F. 1997. Effects of dietary selenium and vitamin E on boar performance and tissue responses, semen quality, and subsequent fertilization rates in mature gilts. Journal of Animal Science 75(11): 2994-3003.

Markley, R.L.; Williamson, D.R.; Katkere, B.; Dewan, K.K.; Shay, A.E.; Sumner, S.E.; Kirimanjeswara, G.S. 2017. Macrophage sele-noproteins restrict intracellular replication of Francisella tularensis. The Journal of Immunology 198(1 Supplement): 148.

Mateo, R.D.; Spallholz, J.E.; Elder, R.; Yoon, I.; Kim, S.W. 2007. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. Journal of animal science 85(5): 1177-1183.

Ma, Y.L.; Lindemann, M.D.; Pierce, J.L.; Unrine, J.M.; Cromwell, G.L. 2014. Effect of inorganic or organic selenium supplementation on reproductive performance and tissue trace mineral concentrations in gravid first-parity gilts, fetuses, and nursing piglets. Journal of animal science 92(12): 5540-5550.

McDowell, L.R.; Froseth, J.A.; Piper, R.C.; Dyer, I.A.; Kroening, G.H. 1977. Tissue Selenium and Serum Tocopherol Concentrations in Selenium-Vitamin E Deficient Pigs Fed Peas (Pisum sativum). Journal of animal science 45(6): 1326-1333.

National Research Council. 2012. Nutrient requirements of swine. 11th Edition. National Academies Press. Washington, United States. 86 pp.

Rayman, M.P. 2004. The use of high-selenium yeast to raise selenium status: how does it measure up? British Journal of Nutrition 92(4): 557-573.

Rayman, M.P. 2012. Selenium and human health. The Lancet 379(9822): 1256-1268.

Roman, M.; Jitaru, P.; Barbante, C. 2014. Selenium biochemistry and its role for human health. Metallomics 6(1): 25-54.

Sauvant, D.; Schmidely, P.; Daudin, J.J.; St-Pierre, N.R. 2008. Meta-analyses of experimental data in animal nutrition. Animal 2(8): 1203-1214.

Seyedali, A.; Berry, M.J. 2014. Nonsensemediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. Rna 20(8): 1248-1256.

Surai, P.F.; Fisinin, V.I. 2014. Selenium in poultry breeder nutrition: An update. Animal Feed Science and Technology 191: 1-15.

Surai, P.F.; Fisinin, V.I. 2015a. Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning. Journal of Veterinary Science & Medicine 3(1): 66-84.

Surai, P. F.; Fisinin, V.I. 2015b. Selenium in Pig Nutrition and reproduction: Boars and semen quality—A Review. Asian-Australasian journal of animal sciences 28(5): 730-746.

Surai, P.F.; Fisinin, V.I. 2016. Selenium in sow nutrition. Animal Feed Science and Technology 211: 18-30.

Tian, J.Z.; Yun, M.S.; Kong, C.S.; Piao, L.G.; Long, H.F.; Kim, J.H.; Han, I.K. 2005. Effects of different products and levels of selenium on growth, nutrient digestibility and selenium retention of growing-finishing pigs. Asian-australasian journal of animal sciences 19(1): 61-66.

Wang, Y.; Zhan, X.; Zhang, X.; Wu, R.; Yuan, D. 2011. Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biological Trace Element Research 143(1): 261-273.

Whanger, P.D. 2002. Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition 21(3): 223-232.

White, P.J. 2015. Selenium accumulation by plants. Annals of botany 117(2): 217-235.

Zhan, X.; Wang, M.; Zhao, R.; Li, W.; Xu, Z. 2007. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Animal Feed Science and Technology 132(3-4): 202-211.

Zhao, L.; Sun, L.H.; Huang, J.Q.; Briens, M.; Qi, D.S.; Xu, S.W.; Lei, X.G. 2017. A novel organic selenium compound exerts unique regulation of selenium speciation, selenogenome, and selenoproteins in broiler chicks. The Journal of nutrition 147(5): 789-797.

Zoidis, E.; Demiris, N.; Kominakis, A.; Pappas, A.C. 2014. Meta-analysis of selenium accumulation and expression of antioxidant enzymes in chicken tissues. Animal 8(4): 542-554.

Received February 25, 2019.

Accepted September 9, 2019.

Corresponding author: jrquisirumbay@uce.edu.ec (J. Quisirumbay-Gaibor).

Descargas

Publicado

2019-10-07

Cómo citar

Quisirumbay-Gaibor, J., & Vílchez-Perales, C. (2019). Meta-análisis: efecto de la suplementación dietaria de selenio en la concentración tisular en cerdos. Scientia Agropecuaria, 10(3), 369-375. https://doi.org/10.17268/sci.agropecu.2019.03.07

Número

Sección

Artículos originales

Artículos más leídos del mismo autor/a