Galleta elaborada con harina de quinua, fibras del endospermo de tara y hojas de agave: Valor biológico y aceptabilidad global

Autores/as

  • Alejandrina Sotelo Universidad Nacional Agraria La Molina, Lima, Perú.
  • Nataly Bernuy-Osorio Universidad Nacional Agraria La Molina, Lima, Perú.
  • Fulgencio Vilcanqui Universidad Nacional Micaela Bastidas de Apurimac, Abancay, Apurimac, Perú. http://orcid.org/0000-0002-9163-5655
  • Elizabeth Paitan Universidad Nacional del Centro del Peru, Huancayo, Perú.
  • Milber Ureña Universidad Nacional Agraria La Molina, Lima, Perú. http://orcid.org/0000-0002-6817-2373
  • Carlos Vílchez-Perales Universidad Nacional Agraria La Molina, Lima, Perú. http://orcid.org/0000-0002-4757-527X

DOI:

https://doi.org/10.17268/sci.agropecu.2019.01.08

Palabras clave:

galletas, aceptabilidad, valor biológico aparente, quinua, fibras.

Resumen

El objetivo fue evaluar la inclusión de harina quinua Altiplano cocida (HQA), fibra soluble del endospermo de tara (FST) e insoluble de hojas de agave (FIA) sobre propiedades sensoriales de galletas y su respuesta fisiológica en ratas. Se realizó la evaluación sensorial con participación de consumidores mediante prueba hedónica con escala no estructurada. Para la evaluación biológica, se utilizó 20 ratas Holtzman que recibieron durante 30 días las dietas conteniendo galletas con: T1 = harina de trigo, T2 = 15% HQA, T3 = 2,85% FST + 2,85% FIA, T4 = 15% HQA + 2,85% FST + 2,85% FIA. Se realizó la determinación de valor biológico aparente (VBA) e indicadores somáticos (índice de masa corporal, índice de Lee, circunferencia torácica y abdominal). Los datos fueron analizados bajo Diseño Completamente Randomizado y para comparación de medias se utilizó la prueba de Tukey mediante el programa Minitab v.17.1.0. Las galletas que contenían quinua tuvieron mayor aceptabilidad (p < 0,05) comparadas a los otros tratamientos. No hubo diferencias (p > 0,05) entre los tratamientos para VBA e indicadores somáticos. Las galletas con inclusión de quinua Altiplano cocida de forma independiente o combinada poseen mayor digestibilidad aparente y aceptabilidad por los consumidores; además, todos los tratamientos mantuvieron una adecuada respuesta fisiológica en ratas.

Citas

Bassinello, P.Z.; Freitas, D.G.C.; Ascheri, J.L. 2011. Characterization of cookies formulated with rice and black bean extruded flours. Procedia Food Science 1: 1645–1652.

Bernuy-Osorio, N.D.; Riveros-Lizana, R.; Villanueva-Espinoza, M.E.; Suárez-Cunza, S.; Vílchez-Perales, C. 2018. Influence of the consumption of Quinoa on the biochemical parameters and intestinal histo-morphometry in obese rats. Revista Peruana de Medicina Experimental y Salud Pública 35(2): 228-233.

Bick, A.; Fogaca, A.; Storck R. 2014. Biscuits with different concentrations of quinoa flour in partial substitution to wheat flour. Braz. Journal of Food Technology 17(2): 121-129.

Bodwell, C.E. 1977. Problems in the development and application of rapid methods of assessing protein quality. Food Technology 8: 188-199.

Cossio, M.; Campos, R.G.; Vitoria, R.V.; Fogaça, R.T.; De Arruda, M. 2013. Valores de confiabilidad de indicadores somáticos en ratas machos Wistar. Nutrición Hospitalaria 28: 2151–2156.

Chopra, N.; Dhillon, B.; Rani, R.; Singh, A. 2018. Physico-Nutritional and Sensory Properties of Cookies Formulated with Quinoa, Sweet Potato and Wheat Flour Blends. Curr. Res. Nutr. Food Sci. 6(3): 798–806.

Demir, M.; Kılınç, M. 2017. Utilization of quinoa flour in cookie production. Journal International Food Research 24(6): 2394-2401.

Fasolin, L.H.; Almeida, G.C.; Castanho, P.S.; Netto-Oliveira, E.R. 2007. Cookies produced with banana meal: chemical, physical and sensorial evaluation. Food Science Technology 27: 524–529.

FAO/OMS. 1991. Necesidades de vitamina A, hierro, folato y vitamina B12. Informe de una consulta mixta de expertos FAO/OMS. Editorial OMS. Roma.

Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Thomas, E.; Bell, J.D. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5: 1-11.

Goyat, J.; Passi, S.J.; Suri, S.; Dutta, H. 2018. Development of Chia (Salvia hispanica L.) and Quinoa (Chenopodium quinoa L.) Seed Flour Substituted Cookies- Physicochemical, Nutritional and Storage Studies. Curr. Res. Nutr. Food Sci. 6(3): 757–769.

Gómez, A.M.; Segura-Carretero, A.; Fern, A.; Caboni, M.F. 2011. Simultaneous determination of phenolic compounds and saponins in quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology. Journal of Agricultural and Food Chemistry 59: 10815–10825.

Guevara, C.S.; Vallejo, E.J. 2014. Medicinal potentials of the genres Furcraea and Agave. Revista Cubana de Plantas Medicinales 19(1): 248-263.

Harra, N.M.; Lemm, T.; Smith, C. 2011. Quinoa flour is an acceptable replacement for all purpose flour in a peanut butter cookie. J. Am. Diet. Assoc. 111: SA45.

Hernández, J. 2015. Quinoa, an option for the nutrition of the patient with diabetes mellitus. Revista Cubana de Endocrinología 26(3): 304-312.

Jancurová, M.; Minarovičová, L.; Dandár, A. 2009. Rheological properties of doughs with buckwheat and quinoa additives. Chemical Papers 63(6): 738-741.

Lorenz, K.; Coulter, L.; Johnson, D. 1995. Functional and sensory characteristics of quinoa in foods. Developments in Food Science 37: 1031–1041.

Novelli, E.; Diniz, Y.; Galhardi, C.; Ebaid, G.; Rodrigues, H.; Mani, F.; Fernandes, A.; Cicogna, A.; Vovelli, J. 2007. Anthropometrical parameters and markers of obesity in rats. Laboratory Animals 41: 111–119.

NRC, National Research Council. 1995. Nutrient Requirements of Laboratory Animals. 4th ed., Editorial National Academy Press. Washington.

Panchal, S.K.; Brown, L. 2011. Rodent Models for Metabolic Syndrome Research. Journal of Biomedecine & Biotechnology 351982: 1–14.

Paśko, P.; Zagrodzki, P.; Barton, H.; Chlopicka, J.; Gorinstein, S. 2010. Effect of quinoa seeds (Chenopodium quinoa) in diet on some biochemical parameters and essential elements in blood of high fructose-fed rats. Plant Foods for Human Nutrition 65(4): 333–338.

Przybilski, H. 1977. Evaluation of proteins for humans. 2th ed., Editorial The Avi Publishing Company Inc., Westport.

Rahaie, S.; Taghi, G.; Hadi, R.; Mahdi, J. 2014. Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. Journal of Food Science and Technology 51(11): 2896-2906.

Román, M.; Valencia, F. 2006. Evaluation of crackers with cereal fiber as a functional food. Vitae 13(2): 36-43.

Rojas, G.B. 2002. Efecto del Tratamiento Térmico de la extrusión sobre la calidad proteica del Frijol (Phaseolus vulgaris L.) del tipo Panamito, Tesis para optar el grado de magíster scientiae en Nutrición, Universidad Nacional Agraria La Molina.

Stikic, R.; Glamoclija, D.; Demin, M.; Vucelic-Radovic, B.; Jovanovic, Z.; Milojkovic-Opsenica, D.; et al. 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science 55: 132–138.

Tsikritzi, R; Moynihan, P.; Gosney, M.A.; Allenc, V.J.; Methven, L. 2014. The effect of macro- and micro-nutrient fortification of biscuits on their sensory properties and on hedonic liking of older people. Journal of the Science of Food and Agriculture 94: 2040–2048.

Ureña, M.; D´Arrigo, P.; Girón, H. 1999. Evaluación sensorial de alimentos. 1th ed., Universidad Nacional Agraria La Molina. Lima – Perú.

Vilcanqui, F. ; Vílchez, C. 2017. Fiber dietary: new definitions, functional properties and health benefits, Review. Archivos Latinoamericanos de Nutrición 67(2): 146-156.

Vilcanqui, F. 2018. Propiedades funcionales y fisiológicas de dietas con fibra soluble (goma de tara) e insoluble (hojas de agave) en ratas Holtzman. Tesis para optar el grado de Doctor. Universidad Nacional Agraria La Molina. Perú.

Walter, T.; Hertrampf, E.; Pizarro, F.; Olivares, M.; Llaguno, S.; Letelier, A.; Vega, V.; Stekel, A. 1993. Effect of bovine-hemoglobin-fortified cookies on iron status of schoolchildren: a nationwide program in Chile. The American Journal of Clinical Nutrition 57(2): 190–194.

Wang, S.; Zhu, F. 2016. Formulation and quality attributes of quinoa food products. Food and Bioprocess Technology 9: 49-68.

Watanabe, K.; Kawanishi-Asaoka, M.; Myojin, C.; Awata, S.; Ofusa, K.; Kodama, K. 2014. Amino acid composition, oxidative stability, and consumer acceptance of cookies made with quinoa flour. Food Science and Technology Research 20(3): 687–691.

Received December 20, 2018.

Accepted March 21, 2019.

Corresponding author: asotelo@lamolina.edu.pe (A. Sotelo).

Descargas

Publicado

2019-04-01

Cómo citar

Sotelo, A., Bernuy-Osorio, N., Vilcanqui, F., Paitan, E., Ureña, M., & Vílchez-Perales, C. (2019). Galleta elaborada con harina de quinua, fibras del endospermo de tara y hojas de agave: Valor biológico y aceptabilidad global. Scientia Agropecuaria, 10(1), 73-78. https://doi.org/10.17268/sci.agropecu.2019.01.08

Número

Sección

Artículos originales