Obtaining the ideal smoked bacon: What is the influence of the product space and multivariate procedure to construct the external preference mapping?

Erick Saldaña, Mariana Marinho, Beatriz Schmidt, Miriam Mabel, Carmen Contreras-Castillo

Resumen


Identifying the ideal product is the most important step in new product development and improvement of existing ones. The aim of this study was to identify the ideal smoked bacon using PrefMFA and PrefMap considering three different sensory spaces obtained via descriptive analysis (DA), projective mapping (PM) and CATA questions. Six smoked bacons were characterized by ten trained assessors using DA, and by two consumers panel using PM (n=93) and CATA questions (n=100). Also, one hundred consumers indicated their overall liking using a nine-point hedonic scale. The results showed that both techniques identified an ideal product. However, the sensory method has a greater effect than the multivariate procedure to obtain the sensory spaces prior to the preference mapping. Subsequent studies with other food matrices are still necessary in order to generalize our results.


Palabras clave


Sensory profile; Overall liking; Ideal bacon

Texto completo:

PDF

Referencias


AOAC. 1995. Official methods of analysis of AOAC International. Association of Official Analysis Chemists International.

Arditti, S. 1997. Preference mapping: A case study. Food Quality and Preference 8(5): 323-327.

Ares, G.; Giménez, A.; Gámbaro, A. 2006. Preference mapping of texture of dulce de leche. Journal of Sensory Studies 21(6): 553-571.

Ares, G.; Varela, P. 2017. Trained vs. consumer panels for analytical testing: Fueling a long lasting debate in the field. Food Quality and Preference 61: 79-86.

Ares, G.; Varela, P.; Rado, G.; Giménez, A. 2011. Identifying ideal products using three different consumer profiling methodologies. Comparison with external preference mapping. Food Quality and Preference 22(6): 581-591.

Cadena, R.S.; Caimi, D.; Jaunarena, I.; Lorenzo, I.; Vidal, L.; Ares, G., Deliza, R.; Giménez, A. 2014. Comparison of rapid sensory characterization methodologies for the development of functional yogurts. Food Research International 64: 446-455.

Cariou, V.; Verdun, S.; Qannari, E.M. 2014. Quadratic PLS regression applied to external preference mapping. Food Quality and Preference 32: 28–34.

Danzart, M.; Sieffermann, J.M.; Delarue, J. 2004. New developments in preference mapping techniques: finding out a consumer optimal product, its sensory profile and the key sensory attributes. In 7th Sensometrics Conference. Davis, CA. july, 2004.

Dooley, L.; Lee, Y.S.; Meullenet, J.F. 2010. The application of check-all-that-apply (CATA) consumer profiling to preference mapping of vanilla ice cream and its comparison to classical external preference mapping. Food Quality and Preference 21(4): 394–401.

El Ghaziri, A.; Qannari, E.M. 2015. Measures of association between two datasets; Application to sensory data. Food Quality and Preference 40(PA): 116–124.

Gómez-Corona, C.; Lelievre-Desmas, M.; Escalona Buendía, H.B.; Chollet, S.; Valentin, D. 2016. Craft beer representation amongst men in two different cultures. Food Quality and Preference 53: 19-28.

Hopfer, H.; Heymann, H. 2013. A summary of projective mapping observations - The effect of replicates and shape, and individual performance measurements. Food Quality and Preference 28: 164-181.

Huang, Y.; Li, H.; Huang, T.; Li, F.; Sun, J. 2014. Lipolysis and lipid oxidation during processing of Chinese traditional smoke-cured bacon. Food Chemistry 149: 31–39.

Kathrine, L.; Ellen, S.; Gunilla, L.; Margrethe, H.; Bjørg, E. 2013. Consumer acceptability of differently processed bacons using raw materials from entire males. LWT - Food Science and Technology 51(1): 205–210.

Lawless, H.T.; Heymann, H. 2010. Sensory evaluation of foods. Principles and practices. Sensory Evaluation of Foods. Principles and Practices. Second Edi. Springer. New York, E.E.U.U. 819 pp.

Lê, S.; Husson, F. 2008. Sensominer: A package for sensory data analysis. Journal of Sensory Studies, 23(1): 14–25.

Lê, S.; Josse, J.; Husson, F. 2008. FactoMineR: A Package for Multivariate Analysis. Journal of Statistical Software 25(1): 1–18.

Lê, S.; Worch, T. 2014. When products are described by both liking and external information “independently.” In Analyzing Sensory Data with R. Chapman and Hall/CRC. 271–299 pp.

Macfie, H. 2007. Preference mapping and food product development. In Consumer-led food product development. 551–592 pp.

Masson, M.; Saint-Eve, A.; Delarue, J.; Blumenthal, D. 2016. Identifying the ideal profile of French yogurts for different clusters of consumers. Journal of Dairy Science 99(5): 3421–3433.

Oltra, O.R.; Farmer, L.J.; Gordon, A.W.; Moss, B.W.; Birnie, J.; Devlin, D.J.; Tolland, E.L.; Tollerton, I.J.; Beattie, A.M.; Kennedy, J.T.; Farrell, D. 2015. Identification of sensory attributes, instrumental and chemical measurements important for consumer acceptability of grilled lamb Longissimus lumborum. Meat Science 100: 97–109.

Pagès, J.; Husson, F. 2014. Multiple factor analysis: Presentation of the method using sensory data. In Mathematical and Statistical Methods in Food Science and Technology: 87–102.

Parente, M.E.; Manzoni, A.V.; Ares, G. 2011. External Preference Mapping Of Commercial Antiaging Creams Based On Consumers’ Responses To A Check-All-That-Apply Question. Journal of Sensory Studies 26(2): 158–166.

Peltier, C. 2015. Statistical analysis of sensory profiling data revisited by a database approach. Université de Bourgogne.

Peltier, C.; Visalli, M.; Schlich, P. 2015. Canonical Variate Analysis of Sensory Profiling Data. Journal of Sensory Studies 30(4): 316–328.

Resano, H.; Sanjuán, A.I.; Cilla, I.; Roncalés, P.; Albisu, L.M. 2010. Sensory attributes that drive consumer acceptability of dry-cured ham and convergence with trained sensory data. Meat Science 84(3): 344–351.

Robert, P.; Escoufier, Y. 1976. A Unifying Tool for Linear Multivariate Statistical Methods: The RV-Coefficient. Source Journal of the Royal Statistical Society. Series C (Applied Statistics) AppL. Statist 25(3): 257–265.

Saldaña, E.; Behrens, J.H.; Serrano, J.S.; Ribeiro, F.; de Almeida, M.A.; Contreras-Castillo, C.J. 2015. Microstructure, texture profile and descriptive analysis of texture for traditional and light mortadella. Food Structure 6: 13-20.

Saldaña, E.; Castillo, L.S.; Cabrera, J.; Siche, R., Behrens, J.H.; Selani, M.M.; de Almeida, M.A.; Duque, L.; Silva, J.; Contreras-Castillo, C.J. 2018. Relationship between volatile compounds and consumer-based sensory characteristics of bacon smoked with different Brazilian woods. Food Research International.

Saldaña, E.; Castillo, L.S.; Sánchez, J.C.; Siche, R.; de Almeida, M.A.; Behrens, J.H.; Selani, M.M.; Contreras-Castillo, C.J. 2018. Descriptive analysis of bacon smoked with Brazilian woods from reforestation: methodological aspects, statistical analysis, and study of sensory characteristics. Meat Science 140: 44-50.

Saldaña, E.; de Oliveira Garcia, A.; Selani, M.M.; Haguiwara, M.M.H.; de Almeida, M.A.; Siche, R.; Contreras-Castillo, C.J. 2018. A sensometric approach to the development of mortadella with healthier fats. Meat Science 137: 176–190.

Saldaña, E.; Lemos, C.; Selani, M.M.; Spada, F.P.; Almeida, M.A.; Contreras-castillo, C.J. 2015. Influence of animal fat substitution by vegetal fat on Mortadella- type products formulated with different hydrocolloids. Scientia Agricola 72(6): 495–503.

Saldaña, E.; Saldarriaga, L.; Cabrera, J.; Behrens, J.H.; Selani, M.M.; Rios-Mera, J.; Contreras-Castillo, C.J. 2019. Descriptive and hedonic sensory perception of Brazilian consumers for smoked bacon. Meat Science 147: 60–69.

Saldaña, E.; Saldarriaga, L.; Sanchez, J.C.; Siche, R.; Almeida, M.A.; Behrens, J.H.; Selani, M.M.; Contreras-Castillo, C.J. 2018. Descriptive analysis of bacon smoked with Brazilian woods from reforestation: methodological aspects, statistical analysis, and study of sensory characteristics. Meat Science 140: 44–50.

Schlich, P. 1995. Preference mapping: relating consumer preferences to sensory or instrumental measurements. Bioflavour’95. Retrieved from http://agris.fao.org/agris-search/search/display.do?f=1996/FR/FR96042.xml;FR9604227

Soladoye, O.P.; Shand, P.; Dugan, M.E.R.; Gariépy, C.; Aalhus, J.L.; Estévez, M.; Juárez, M. 2017. Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon. Food Research International 99: 660-669.

Tuorila, H. 2007. Sensory perception as a basis of food acceptance and consumption. In H. B. T.-C.-L. F. P. D. MacFie (Ed.), Consumer-Led Food Product Development. Woodhead Publishing. 34–65 pp.

Valentin, D.; Chollet, S.; Lelie, M. 2012. Quick and dirty but still pretty good: a review of new descriptive methods in food science. International Journal of Food Science and Technology 47: 1563–1578.

van Kleef, E.; van Trijp, H.C.M.; Luning, P. 2005. Consumer research in the early stages of new product development: a critical review of methods and techniques. Food Quality and Preference 16(3): 181–201.

van Kleef, E.; van Trijp, H.C.M.; Luning, P. 2006. Internal versus external preference analysis: An exploratory study on end-user evaluation. Food Quality and Preference 17(5): 387–399.

Vidal, L.; Tárrega, A.; Antúnez, L.; Ares, G.; Jaeger, S.R. 2015. Comparison of Correspondence Analysis based on Hellinger and chi-square distances to obtain sensory spaces from check-all-that-apply (CATA) questions. Food Quality and Preference 43: 106–112.

Worch, T. 2013. PrefMFA, a solution taking the best of both internal and external preference mapping techniques. Food Quality and Preference 30(2): 180–191.

Received February 11, 2019.

Accepted March 17, 2019.

Corresponding author: ccastill@usp.br (C. Contreras-Castillo).




DOI: http://dx.doi.org/10.17268/sci.agropecu.2019.01.03

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

           

  

      

            

    

     

   

                             

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe