Efecto del tratamiento enzimático de la semilla de moringa (Moringa oleífera) sobre las características físico-químicas del aceite obtenido por extracción con prensa expeller

Jhoel Fernández, Gloria Pascual, Marcial Silva-Jaimes, Bettit Salvá, Américo Guevara, Christian Encina

Resumen


En el presente estudio se evaluó la eficacia del uso de una enzima (hemicelulasa al 2%, materia prima:agua de 3:1 y tiempo de hidrólisis de 24 horas) para incrementar el rendimiento de la extracción del aceite de moringa con prensa-expeller y  los cambios en las características fisicoquímicas y antioxidantes del aceite. Se obtuvo un mayor rendimiento en la extracción del aceite de moringa realizada con previo tratamiento enzimático y se encontró diferencias significativas en el índice de peróxido y grado de acidez en la caracterización fisicoquímica del aceite. Se determinó que el ácido oleico se encuentra en mayor proporción en el aceite de moringa (72%) y se encontró elevadas concentraciones de tocoferoles, siendo el α-tocoferol el isómero mayoritario (aproximadamente un 80% del total). Además, se determinó que el aceite de moringa extraído con previo tratamiento enzimático presentó un mayor contenido de polifenoles totales con respecto al aceite de moringa control, sin embargo, no se encontró diferencias significaticas en la capacidad antioxixdante lipofílica e hidrofílica del aceite de moringa determinada por el método ABTS.


Palabras clave


Moringa oleífera; aceite de moringa; extracción enzimática de aceite; oxidación lipídica; ácidos grasos; polifenoles; tocoferoles.

Texto completo:

PDF

Referencias


Abdulkarim, S.M.; Long, K.; Lai, O.M.; Muhammad, S.K.S.; Ghazali, H.M. 2005. Some physico-chemical properties of Moringa oleifera seed oil extracted using solvent and aqueous enzymatic methods. J. Food Chem. 93(1): 253-263.

Anwar, F.; Nahid, Z.; Rashid, U. 2006. Characterization of Moringa oleífera seed oil from drought and irrigated regions on Punjab, Pakistan. Grasas y Aceites. 57(2): 160-168.

Anwar, F.; Rashid, U. 2007. Physico-chemical characteristics of Moringa oleífera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 39(5): 1443–1453.

AOAC (Association of oficial Analytical Chemistry). 1990. Official methods of Analysis of the Association of official Analytical Chemistry. 15th Edition. DC: Washington, EEUU.

AOCS (American Oil Chemists Society). 1989. Official Methods and Recommended Practices of the American Oil Chemists Society. 4th Edition. EEUU.

Brenes, M.; García, A.; García, P.; Ríos, J.; Garrido, A. 1999. Phenolic compounds in Spanish olive oils. J. Agric. Food Chem. 47: 3535-3540.

Dinesha, B.L.; Udaykumar-Nidoni, C.T.; Ramachandra, N.N.; Sankalpa, K.B. 2018. Effect of extraction methods on physicochemical, nutritional, antinu-tritional, antioxidant and antimicrobial activity of Moringa (Moringa oleifera Lam.) seed kernel oil. J. Appl. Natural Sci. (IJANS) 10(1): 287 – 295

Durán, J. 2010. Aplicación de enzimas en el proceso de extracción del aceite residual de la torta de palmiste. Tesis de título, Universidad Industrial de Santander, Bucaramanga. Colombia.

Espín, J.; Soler-Rivas, C.; Wichers, H. 2000. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-Dipheniyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 48: 648-56.

Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Anthony J. Afolayan, A.J.; Muchenje, V. 2018. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 106: 317–334

FDA (Food and Drug Administration). 2001. Agency response letter. GRAS notice No. 000069. DC: Washington, EEUU.

Fernándes, D.; Sousa, R.; De Oliveira, A.; Morais, S.; Richter, E.; Muñoz, R. 2015. Moringa oleifera: A potential source for production of biodiesel and antioxidant additives. Fuel 146: 75-80.

Franconi, F.; Coinu, R.; Carta, S.; Urgeghe, P.; Ieri, F.; Mulinacci, N.; Romani, A. 2006. Antioxidant effect of two virgin olive oils depends on the concentration and composition of minor polar compounds. J. Agric. Food Chem. 54: 3121-3125.

Gil, A. 2010. Grasas y Aceites. Tratado de Nutrición. Tomo II: Composición y calidad nutritiva de los alimentos. 2da edición. Editorial Médica Panamericana. Argentina.

Gorinstein, S.; Martin-Belloso, O.; Katrich, E.; Lojek, A.; Ciz, M.; Gligelmo-Miguel, N.; Haruenkit, R.; Park, Y.; Jung, S.; Trakhtenberg, S. 2003. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. J. Nutr. Biochem. 14: 154-9.

Grasso, V. 2013. Diseño del proceso: Pretratamiento enzimático para extracción de aceites vegetales en un extractor de columna. Tesis Doctoral, Universidad Nacional de La Plata. Argentina. 194 pp.

Gutfinger, T. 1981. Polyphenols in olive oil. J. Am. Oil Chem. Soc. 58: 966.

ITP (Instituto Tecnológico Pesquero del Perú). 2003. Laboratorio de Análisis Fisicoquímico: Composición de ácidos grasos por cromatografía de gases. Lima, Perú.

Konopka, I.; Roszkowska, B.; Czaplicki, S.; Tańska, M. 2016. Optimization of pumpkin oil recovery by using aqueous enzymatic extraction and comparison of the quality of the obtained oil with the quality of cold-pressed oil. Food Technol. Biotechnol. 54(4): 413–420.

Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. 2017. Green solvents and technologies for oil extraction from oilseeds. Chem. Central J. 11(1): 9.

Lalas, S.; Tsaknis, J. 2001. Characterization of Moringa oleifera Seed Oil Variety ‘‘Periyakulam 1’’. Technological Educational Institute. J. Food Compos. Anal. 15: 65-77.

Latif, S. 2009. Analytical investigations to compare the enzyme-assisted extraction of vegetable oils with conventional methods. Tesis de doctorado, University of Agriculture Faisalabad. Pakistán.

Latif, S., Anwar, F.; Hussain, A.; Mahmood, S. 2011. Aqueous enzymatic process for oil and protein extraction from Moringa oleifera seed. Eur. J. Lipid. Sci. Technol. 113: 1012-1018

Latif, S.; Anwar, F. 2008. Quality assessment of Moringa concanensis seed oil extracted through solvent and aqueous-enzymatic techniques. Grasas y aceites 59: 69-75.

Mani, S.; Jaya, S.; Vadivambal, R. 2007. Optimization of solvent extraction of Moringa (Moringa oleifera) seed kernel oil using response surface methodology. J. Food Bioprod. Processing. 85(4): 328-335.

Manzoor, M.; Anwar, F.; Iqbal, T. 2007. Physico-chemical characterization of Moringa concanensis seeds and seed oil. J. Am. Oil Chem. Soc. 84: 413-419.

Marfil, R. 2008. Parámetros de calidad y componentes con interés nutricional del aceite de argán (Argania spinosa). Tesis de doctorado, Universidad de Granada. España. 269 pp.

Martín, C.; Martín, G.; García, A.; Fernández, T.; Hernández, E.; Puls, J. 2013. Potential applications of Moringa oleífera. A critical review. Pastos y Forrajes 36(2): 150-158.

Mat Yusoff, M.; Gordon, M. H.; Ezeh, O.; Niranjan, K. 2017. High pressure pretreatment of Moringa oleifera seed kernels prior to aqueous enzymatic oil extraction. Innov. Food Sci. Emerg. Technol., 39, 129–136.

Meyer, A.; Jepsen, S.; Sorensen, N. 1998. Enzymatic reléase of antioxidants for human low-density lipoprotein from grape pomace. J. Agric. Food Chem. 46: 2439-2446.

Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. 2011. Nutritional characterization of Moringa (Moringa Oleifera Lam.) leaves. Afr. J. Biotechnol.10: 12925–12933.

Nadar, Sh. S.; Rao, P.; Rathod, V.K. 2018. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 108: 309–330

Nguyen, H.N.; Gaspillo, P.D.; Maridable, J.B.; Malaluan, R.M.; Hinode, H.; Salim, C.; Huynh, H.K.P. 2011. Extraction of oil from Moringa oleifera kernels using supercritical carbon dioxide with ethanol for pretreatment: Optimization of the extraction process. J. Chem. Eng. Proc. 50(1): 1207-1213.

Ogbunugafor, H.; Eneh, F.; Ozumba, A.; Igwo-Ezikpe, M.; Okpuzor, J.; Igwilo, I.; Adenekan, S.; Onyekwelu1, O. 2011. Physico-chemical and Antioxidant Properties of Moringa oleifera Seed Oil. Pak. J. of Nut. (PJN) 10(5): 409-414.

Olaiya, O.; Temitayo, G.; Joseph, O.; Opeyemi, D.; Timothy, A.; Olusola, Y. 2018. Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration. J. Agric. Food Chem. 25: 57-62.

Pellegrini, N.; Visioli, F.; Buratti, S.; Brighenti, F. 2001. Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J. Agric. Food Chem. 49: 2532-2538.

Prior, R.; Wu, X.; Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Agric. Food Chem. 53: 4290-4302.

Ruttarattanamongkol, K.; Siebenhandlehn, S.; Schreiner, M.; Petrasch, A. 2014. Pilot-scale supercritical carbon dioxide extraction, physico-chemical properties and profile characterization of Moringa oleifera seed oil in comparison with conventional extraction methods. Ind. Crops Prod. 58: 68-77.

Sánchez, D.; López, J.; Núñez, J.; Servín, G.; López, J.; Paseiro, P. 2015. Effect of the refining process on Moringa oleifera seed oil quality. Food Chem. 187: 53-57.

Shahidi, F.; Zhong, Y. 2005. Lipid oxidation: Measu-rement methods. 6th edition. Editorial Bailey's industrial oil and fat products, Wiley and Sons. Estados Unidos.

Siguel, E.; Lerman, R. 1993. Trans-fatty acid patterns in patients with angiographically documented coro-nary artery disease. Am. J. Cardiol. 71: 916-920.

Tsaknis, J.; Lalas, S.; Gergis, V.; Dourtoglou, V.; Spiliotis, V. 1999. Characterization of Moringa oleifera Variety Mbololo Seed Oil of Kenya. J. Agric. Food Chem. 47: 4495-4499.

Tuberoso, C.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. 2007. Determination of antioxidant compounds and antioxidant activity in commercial oil seeds for food use. Food Chem. 103(4): 1494-1501.

Valavanidis, A.; Nisiotou, C.; Papageorgiou, Y.; Kremli, I.; Satravelas, N.; Zinieris, N.; Zygalaki, H. 2004. Comparison of the radical sacavenging potencial of polar and lipidic fractions for olive oil and other vegetable oils under normal conditions and after termal treatment. J. Agric. Food Chem. 52: 2358-2365.

Vásquez, A.; Janer, C.; Janer, M. 1973. Determinación de los polifenoles del aceite de oliva. Grasas y Aceites 24: 350-357.

Wiesman, Z. 2009. Desert olive oil cultivation. Advanced Bio Technologies. Primera edición. Editorial Academic Pres. Estados Unidos. 416 pp.

Received December 17, 2017.

Accepted May 11, 2018.

Corresponding author: misilva@lamolina.edu.pe (M. Silva-Jaimes)




DOI: http://dx.doi.org/10.17268/sci.agropecu.2018.03.08

Enlaces refback

  • No hay ningún enlace refback.


Indizada o resumida en:

  

 

   

 

Licencia de Creative Commons Scientia Agropecuaria revista de la Universidad Nacional de Trujillo publica sus contenidos bajo licencia Creative Commons Reconocimiento-NoComercial 3.0.

ISSN: 2306-6741 (electrónico); 2077-9917 (impreso)
DOIhttp://dx.doi.org/10.17268/sci.agropecu

Dirección: Av Juan Pablo II s/n. Ciudad Universitaria. Facultad de Ciencias Agropecuarias. Universidad Nacional de Trujillo. Trujillo, Perú.
Contactosci.agropecu@unitru.edu.pe