Caracterización funcional de almidones nativos obtenidos de papas (Solanum phureja) nativas peruanas

Autores/as

  • P. Martínez Universidad Nacional Agraria La Molina, La Molina
  • A. Málaga Universidad Nacional Agraria La Molina, La Molina
  • I. Betalleluz Universidad Nacional Agraria La Molina, La Molina
  • A. Ibarz Universidad de Lleida, Lleida
  • C. Velezmoro Universidad Nacional Agraria La Molina, La Molina

DOI:

https://doi.org/10.17268/sci.agropecu.2015.04.06

Palabras clave:

papas nativas, almidón, amilosa, poder de hinchamiento, APT, reología, viscoelasticidad

Resumen

Existen muchas variedades de papas nativas cultivadas en diferentes localidades del Perú, generalmente para el auto consumo del agricultor. Sin embargo, la posibilidad de su uso comercial ha originado este trabajo con el fin de darles un valor agregado. Para evaluar la posibilidad de uso del almidón nativo proveniente de estas papas, como ingrediente en la industria alimentaria, se planteó como objetivo determinar las propiedades funcionales de almidones obtenidos de papas nativas procedentes de Pampacorral (Cusco, Perú): Puka Ambrosio (PA), Combe (CO), Perwanita (PER), Kalis qero (KQ), Qello virondos (QEV), Yana churos (YACH), Pitikiña (PI), Yana kusi (YAKU) y Solischa (SOL). Con este fin se prepararon geles con el almidón nativo, por dispersión y calentamiento. El poder de hinchamiento, el índice de absorción y la solubilidad mostraron estar correlacionados con el incremento de la temperatura. A 90 °C, el almidón de la variedad PI mostró los mayores valores de poder de hinchamiento (28,47%), capacidad de absorción de agua (22,70) y solubilidad (20,24%). La menor sinéresis, a 4 °C, la presentaron los almidones de las variedades CO y YACH, 3,8 y 4,6; respectivamente. Los geles de almidón de todas las variedades mostraron un comportamiento pseudoplástico (n < 1) y los valores de viscosidad aparente estuvieron en un rango de 5268 mPa s (PER) a 33080 mPa·s (CO). El almidón de la variedad SOL presentó geles con la menor dureza (2,18 N) y gomosidad (1,30 N) en comparación con los almidones de las otras variedades. Todos los geles de almidón nativo ensayados presentaron un comportamiento predominantemente elástico, pues el módulo de almacenamiento fue mayor que el módulo de pérdida (G´ > G”).

Citas

AOAC. Official Methods of Analysis of the Association of the Official Analytical Chemists. 1990. In: Horwitz, W. (Ed.). 15th ed. AOAC, Washington, DC.

Aprianita, A.; Purwandari, U.; Watson, B.; Vasiljevic, T. 2009. Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. International Food Research Journal 16: 507-520.

Bahrani, S.A.; Loisel, C.; Maache-Rezzouga, Z.; Della Valled, D.; Rezzouga, S.A. 2013. Rheological and viscoelastic properties of corn starch suspension modified by hydrothermal process: Impacts of process intensification. Chemical Engineering and Processing 64: 10– 16.

Bello-Pérez, L. 1995. Claridad de los geles de almidón. En: Manual de métodos de caracterización de carbohidratos (pp. 57).

Bello-Pérez, L.A.; Contreras-Ramos, S.M.; Romero-Manilla, R.; Solorza-Feria, J.; Jiménez-Aparicio, A. 2002. Propiedades químicas y funcionales del almidón modificado de plátano Musa Paradisiaca L. (Var. Macho). Agrociencia 36(2): 169-180.

Betancur-Ancona, D.A.; Chel-Guerrero, L.A.; Camelo-Matos, R.I.; Dávila-Ortiz, G. 2001. Physicochemical and functional characterization of baby lima bean (Phaseolus lunatus) starch. Starch/Stärke 53: 219-226.

Betancur, A.D.; Chel, G.L.; Canizares, H.E. 1997. Acetylation and characterization of Canavalia ensiformis starch. Journal of Agricultural and Food Chemistry 45: 378-382.

Charles, L.A.; Chang, H.Y.; Ko, C.W.; Shiroth, K.; Huang, C.T. 2005. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of Cassava starches. Journal of Agricultural and Food Chemistry 53: 2717-2725.

Chen, W.; Zhou, H.; Yang, H.; Cui, M. 2015. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch. Food Chemistry 167: 180-184.

Gałkowska, D.; Pycia, K.; Juszczak, L.; Pająk, P. 2014. Influence of cassia gum on rheological and textural properties of native potato and corn starch. Starch/Stärke, 66 (11-12), 1060-1070.

Hancco, J.; Blas, R.; Quispe, M.; Ugás, R. 2008. Pampacorral – Catálogo de sus papas nativas. Universidad Nacional Agraria La Molina y Asociación Nacional de Productores Ecológicos. 100 pp.

Hernández, O.; Emaldi, U.; Tovar, J. 2007. In vitro digestibility of edible films from various starch sources. Carbohydrate Polymers 71: 648-655.

Hoover, R. 2010. The Impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Critical Reviews in Food Science and Nutrition 50: 835-847.

Kaur, L.; Singh, J.; McCarthy, O.; Singh, H. 2007a. Physico-chemical, rheological and structural properties of fractionated potato starches. Journal of Food Engineering 82: 383-394.

Kaur, A.; Singh, N.; Ezekiel, R.; Singh, H. 2007b. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chemistry 101: 643–651.

Khondkar, D.; Tester, R.; Hudson, N.; Karkalas, J.; Morrow, J. 2007. Rheological behaviour of uncross-linked and cross-linked gelatinised waxy maize starch with pectin gels. Food Hydrocolloids 21: 1296-1301.

Lee, H.L.; Yoo, B. 2009. Dynamic rheological and thermal properties of acetylated sweet potato starch. Starch/Stärke 61: 407-413.

Lin, J.H.; Kao, W.T.; Tsai, Y.C.; Chang, Y.H. 2013. Effect of granular characteristics on pasting properties of starch blends. Carbohydrate Polymers 98: 1553-1560.

Liu, Q.; Tarn, R.; Lynch, D.; Skjodt, N. 2007. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chemistry 105: 897–907.

Lobato-Calleros, C.; Ramírez-Santiago, C.; Vernon-Carter, E.J., Álvarez-Ramírez, J. 2014. Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity or reduced-fat stirred yogurt. Journal of Food Engineering 131: 110-115.

López, O; Zaritzky, N.; García, M. 2010. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering 100: 160-168.

McGrance, S.; Cornell, H.; Rix, C. 1998. A simple and rapid colorimetric method for the determination of amylose in starch products. Starch/Stärke 50: 158-163.

Mbougueng, P.D.; Tenin, D.; Scher, J.; Tchiégang, C. 2012. Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. Journal of Food Engineering 108: 320-326.

Moo-Huchin, V.M.; Cabrera-Sierra, M.J.; Estrada-León, R.J.; Ríos-Soberanis, C.R.; Betancur-Ancona, D.; Chel-Guerrero, L.; Ortiz-Fernández, A.; Estrada-Mota, I.A.; Pérez-Pacheco, E. 2015. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum Swartz seeds. Food Hydrocolloids 45: 48-54.

Rao, M.A., 1999. Flow and Functional Models for Rheological Properties of Fluid Foods. En: Rao, M.A. (Ed.), Rheology of Fluid and Semisolid Foods: Principles and Applications. Aspen Publishers, Gaithersburg.

Rondán-Sanabria, G.; Finardi-Fhilo, F. 2009. Physical-chemical and functional properties of maca root starch (Lepidium meyenii Walpers). Food Chemistry 114: 492-498.

Sandhu, K.S.; Sharma, L.; Kaur, M. 2015. Effect of granule size on physicochemical, morphological, thermal and pasting properties of native and 2-octenyl-1-ylsuccinylated potato starch prepared by dry heating under different pH conditions. LWT - Food Science and Technology 61(1): 224-230.

Sathe, S.K.; Salunkhe, D.K. 1991. Isolation, partial characterization and modification of the greath northen bean (Phaseolus vulgaris) starch. Journal of Food Science 46: 617-621.

Shon, K.J.; Yoo, B. 2006. Effect of acetylation on rheological properties of rice starch. Starch/Stärke 58: 177-185.

Siche, R.; Falguera, V.; Ibarz, A. 2015. Use of Response Surface Methodology to Describe the Combined Effect of Temperature and Fiber on the Rheological Properties of Orange Juice. Journal of Texture Studies 46: 67-73.

Šimkova, D.; Lachman, J.; Hamouz, K.; Vokal, B. 2013. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chemistry 141: 3872-3880.

Singh, J.; Kaur, L.; Singh, N. 2004. Effect of Acetylation on Some Properties of Corn and Potato Starches. Starch/Stärke 56: 586-601.

Singh, J.; McCarthy, O.J.; Singh, H.; Moughan, P.J.; & Kaur, L. 2007. Morphological, thermal and rheological characterization of starch isolated from New Zealand Kamo Kamo (Cucurbita pepo) fruit–A novel source. Carbohydrate polymers 67 (2): 233-244.

Singh, J.; Owen, J.; McCarthy, J.; Singh, H.; Moughan, P. 2008. Low temperature post-harvest storage of New Zealand Taewa (Maori potato): Effects on starch physico-chemical and functional characteristics. Food Chemistry 106: 583-596.

Sodhi, N.S; Singh, N. 2005. Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering 70: 117-127.

Torruco-Uco, J.; Betancur-Ancona, D. 2007. Physico-chemical and functional properties of makal starch. Food Chemistry 101: 1319-1326.

Waterschoot, J.; Gomand, S.V.; Delcour, J.A. 2016. Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids 52: 69-77.

Zaidul, I.; Yamauchi, H.; Matsuura-Endo, C.; Suzuki, T.; Noda, T. 2007. Correlation between the compositional and pasting properties of various potato starches. Food Chemistry 105: 164-172.

Recibido 03 septiembre 2015.

Aceptado 23 noviembre 2015.

Corresponding author: E-mail: pmartinezt@lamolina.edu.pe (P. Martínez).

Descargas

Publicado

2015-12-05

Cómo citar

Martínez, P., Málaga, A., Betalleluz, I., Ibarz, A., & Velezmoro, C. (2015). Caracterización funcional de almidones nativos obtenidos de papas (Solanum phureja) nativas peruanas. Scientia Agropecuaria, 6(4), 291-301. https://doi.org/10.17268/sci.agropecu.2015.04.06

Número

Sección

Artículos originales