
-143- 

a.  

 

 

 
 

 

REVIEW 

Trends in application of NIR and hyperspectral 
imaging for food authentication  
 

Jeffrey Mendez1; Liz Mendoza1; J.P. Cruz-Tirado2, ; Roberto Quevedo3, ;  

Raúl Siche1,* 
 

 

1 Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Ciudad Universitaria, 
Trujillo, Perú. 

2 Department of Food Engineering, University of Campinas, Brazil.  
3 Departamento de Acuicultura y Recursos Agroalimentarios, Programa FITOGEN, Universidad de Los Lagos, Av. 

Fuchslocher 1305, Osorno, Chile. 
 

Received December 10, 2018. Accepted March 2, 2019. 
 

 

Abstract 
Food fraud can cause damage to consumer health and affect their confidence, destroy brands and 
generate large economic losses in the industry. Food authenticity allows to identify if food composition, 
geographical origin, genetic variety and farming system corresponds to what has been declared on the 
label. Although there are currently standardized methods to identify certain adulterants, the 
complexity of the food, the complexity of the supply chain and the appearance of new adulterants 
require the continuous development of analytical techniques to detect food fraud. NIR and 
Hyperspectral imaging (HSI) in tandem with chemometrics are non-destructive, non-invasive and 
accurate techniques for food authentication. This review focuses on NIR and HIS approaches to food 
authentication, including adulteration by substitution, geographical origin and farming system. In this 
context, the advances in NIR and HSI approaches reported since 2014 are discussed regarding their 
potential use in food authentication. Both techniques have shown to have efficiency, precision and 
selectivity to detect adulterants and identify geographic origin, genetic variety and farming system. 
Portability and remote access are shown as the next step for the industrialization of NIR and HSI 
devices. 
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1. Introduction 
Food authentication has become a growing 
need throughout the world. Food 
authentication is aimed at detecting food 
fraud, which is an illegal action carried out 
for economic purposes through the 
adulteration of a food or false information 
on the label (Barreto et al., 2018; Danezis et 
al., 2016). This may include genetic variety, 
geographical origin, processing technology 
and food composition (Esteki et al., 2018). 
Also, food authentication is important 
because food fraud sometimes has 
unfortunate consequences, for instance, 
the adulteration of milk powder reported in 
China in 2008 (Gossner et al., 2009), which 
caused the death of six children and the 
hospitalization of thousands of others 

(Branigan, 2008). Cases of food fraud 
cause, in addition to mistrust in the 
consumer, large economic losses to 
companies or governments, destroying 
brands and devaluing the market value of 
the affected products. For instance, during 
the pork crisis in Ireland due to dioxin 
contamination, 1800 jobs were lost, and the 
cost was estimated at US$138 million 
(Kennedy et al., 2009), while it is estimated 
that the adulteration of olive oil with 
hazelnut oil causes a loss of 4 million euros 
per year for the European Union (Ozen and 
Mauer, 2002). 
In order to identify food fraud in food, 
various techniques have been developed 
using sophisticated and efficient technolo-
gies, which includes chromatographic 
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methods (Esteki et al., 2018), proteomics, 
metabolomics and genomics-based 
methods (Böhme et al., 2019; Ortea et al., 
2016) and spectroscopy techniques (Abbas 
et al., 2018). This last group includes 
techniques such as near-infrared spectros-
copy (NIR), hyperspectral imaging (HIS), 
Fourier-transform infrared spectroscopy 
(FT-IR) and Raman (Figure 1).  
NIR is based on the absorption of 
electromagnetic radiation (light) in a 
wavelength range between 780 - 2500 nm 
(Esteki et al., 2018). Each food presents a 
characteristic spectrum, a fingerprint that 
allows its identification and differentiation 
(Barbin et al., 2015). Variations in the 
absorption of radiation at each wavelength 
are related to the chemical composition of 
the food (Rady and Adedeji, 2018). There-
fore, factors such as the crop/process 
conditions, geographical origin, variety or 
genotype that affect the chemical 
composition of foods are related with 
different levels of absorption of radiation at 
a certain wavelength (Cozzolino, 2016). 
This allows us, with the help of supervised 
and unsupervised chemometric methods, 
to differentiate and classify a wide variety 
of foods based on the NIR spectral 
information.  
On the other hand, for certain food analysis 
cases, NIR has not allowed to achieve the 
expected efficiency, mainly because it is a 
punctual technique. Hyperspectral imaging 
(HIS) is a variation of NIR (NIR-HIS), which 
combines the spectral information obtained 
from the absorption of the radiation with 
the spatial information obtained from the 
image (Kamruzzaman et al., 2016). NIR-HIS 
provides a greater amount of information 
than NIR, so one of the key approaches for 
its possible industrial application is the 
variable selection and the creation of 
multispectral models that spend less 
processing time. 
 

 
 

Figure 1. NIR and hyperspectral imaging to detect food 
fraud. 

This review shows a summary of the most 
recent applications of NIR and NIR-HIS for 
food authentication, which includes: geo-
graphical origin, genotype, genetic variety 
and adulteration by addition/substitution. 
 

2. 2. Recent applications of NIR and 
NIR-HIS for food authentication 
2.1 Vegetable oil 
Vegetable oils are one of the foods most 
susceptible to adulteration, both by 
addition and by false information regarding 
their geographical origin (Table 1). For 
instance, The Rapid Alert System for Food 
and Feed (RASFF) exposed a food fraud 
case in sunflower oil with high levels of 
mineral oil on 23 April 2008 (Picouet et al., 
2018). This led to Picouet et al. (2018) to 
develop a technique to detect “at-line” 
mineral oil in sunflower oil, using a portable 
NIR coupled with a reflection probe, 
coupled with an immersion probe and a 
prototype of a multichannel Quasi Imaging 
Visible NIR spectrometer coupled to an 
immersion probe. The prototype has been 
useful to detect adulteration at levels above 
2.5%. However, portable NIR coupled to 
reflection probe to be more efficient (R2cal 
better than 0.99), achieving pure samples 
of sunflower oil with a probability of 98.5%, 
and samples adulterated with mineral oil 
with a probability of 95%. Nevertheless, the 
authors conclude that detection of 
adulterated samples below 0.5% is difficult 
using NIR, therefore, chromatographic 
techniques should be use to confirm the 
fraud.  
On the other hand, NIR in transmission and 
transflectance modes combined with 
SIMCA classifier allowed detect lard in 
palm oil with accuracy > 0.95 (Basri et al., 
2017). Also, the quantitative analyses were 
performed by PLS coupled with variable 
selection based on cumulative adaptive 
reweighted sampling (CARS) (Li et al., 
2009). CARS allowed identify important 
wavelength interacted with the fat and oil 
chemical structure, being used for building 
robust prediction model (R2p > 0.99). CARS-
PLS and CARS-ECR (elastic component 
regression) also showed good results for 
identify adulterated samples of sesame oil 
with different oil (see Table 1) (Chen et al., 
2018). Therefore, this selection variable 
method should be tested in other oil type 
with different adulterants or different 
geographical origin.  
One of the vegetable oils with the highest 
risk of adulteration is olive oil (van Ruth et 
al., 2018) established that after the spice 
supply chain, the olive oil supply chain is 
the most susceptible to food fraud, mainly 
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related on fraud factors of (1) fraud 
detectability in raw material and (2) fraud 
detectability in final product, (3) historical 
evidence of fraud, (4) valuable components 
or attributes and (5) level of competition 
branch of industry. For this reason, NIR 
spectroscopy has been a useful tool for the 
detection of olive oil adulteration. Azizian et 
al. (2016) developed PLS models using 
information from the FT-NIR to predict the 
content of various compositional parame-
ters of olive oil and relate it to its 
authenticity. From 66 samples, 50 from 
California (USA), 15 from different 
European countries and 1 from Spain, only 
23 met the authenticity requirements. FT-

NIR allowed in less than 5 min time to 
identify the samples and assign them to 
different groups based on their compo-
sition. Similar results were found to detect 
extra-virgin olive oil adulterated with edible 
oils using FT-NIR spectral data combined 
with SIMCA classifier (Karunathilaka et al., 
2016) and for olive oil blended with edible 
oil using NIR coupled by SVM (Wu et al., 
2016). Also, NIR was very efficient to detect 
soybean oil (Mendes et al., 2015), different 
edible oils (Mossoba et al., 2017) and 
refined and mild deodorized olive oils 
(Wójcicki et al., 2015) in extra-virgin olive 
oil.  

 
Table 1 
NIR and HIS to vegetable oil authentication 
 

Oil type Fraud control  Instrument Chemometrics 
Statistical 
parameters 

Reference 

Sunflower 
oil 

Mineral oil 

NIR on mode 
reflectance  

Background correction + 
baseline correction + 1st 
derivate + MSC/PLS 

R2p=0.99; 
RMSEP=0.23%  

Picouet et al. 
(2018) 

Prototype of a 
multichannel Quasi 
Imaging Visible NIR 
spectrometer 

Background division + 
1st derivate/PLS 

R2p=0.91; 
RMSEC=1.0%  

Palma oil Lard 

NIR in transmission 
mode 

SIMCA 
CARS-PLS 

Precision=1.0 
Specificity=1.0 
Sensitivity=0.2 
R2p=0.99; 
RMSEC=0.33% Basri et al. 

(2017) 

NIR in 
transflectance 
mode 

SIMCA 
CARS-PLS 

Precision=1.0 
Specificity=1.0 
Sensitivity=0.4 
R2p=0.99; 
RMSEP=0.41% 

Sesame 
oil 

Authenticity 
NIR in absorbance 
mode 

CARS-PLS 
CARS-ECR (Elastic 
component regression) 

RMSEC=0.0245; 
RMSEP=0.055 
RMSEC=0.0188; 
RMSEP=0.039 

Chen et al. 
(2018) 

Olive oil Authenticity UV-VIS-NIR  
SBS-PLS (Stimulated 
Brillouin scattering) 

R2p=0.99 
Shi et al. 
(2019) 

Extra 
virgin 
olive oil 

Soybean oil NIR PLS 
R2p=0.99 
RMSEP=1.76 

Mendes et al. 
(2015) 

Extra 
virgin 
olive oil 

Refined and 
mild 
deodorized 
olive oil  

NIR PCR 
R2p=0.98 
RMSEP=2.7 
RDP=8.5 

Wójcicki et al. 
(2015) 

Extra 
virgin 
olive oil 

Geographical 
origin 

NIR PLS-DA 
Overall 
classification=100%  

Jiménez-
Carvelo et al. 
(2019) 

Extra 
virgin 
olive oil 

Authenticity FT-NIR PLS 
R2p>0.95 
 

Mossoba et al. 
(2017) 

Extra 
virgin 
olive oil 

Authenticity FT-NIR SIMCA 
Overall 
classification=100%  

Karunathilaka 
et al. (2016) 

Olive oil Authenticity NIR SVM 
Overall 
classification=93 - 
100%  

Wu et al. 
(2016) 

Extra 
virgin 
olive oil 

Geographical 
origin 

NIR PLS-DA 
R2c=0.93 
RMSEC=0.128 

Peršurić et al. 
(2018) 

Extra 
virgin 
olive oil 

Geographical 
origin 

NIR SIMCA 

Correct 
classification= 89.55 
– 98.50% 
 

Laroussi-
Mezghani et 
al. (2015) 

Olive oil 
Geographical 
origin 

NIR LDA 
Correct 
classification= 98.5 – 
100% 

Forina et al. 
(2015) 
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In contrast, UV-VIS-NIR (in wavelengths 
670 and 455 nm) combined with stimulated 
Brillouin scattering (SBS) achieved to 
detect olive oil adulteration (Shi et al., 
2019). SBS is an inelastic dispersion 
process that is presented by the fluctuation 
of the density of the acoustic sources in the 
medium, which allows to relate it to the 
properties of the density and refractive 
index (Shi et al., 2012). These olive oil 
properties change with adulteration with 
other oils, and can be used as an efficient 
method to separate between pure and 
adulterated samples. The method must be 
extended for analysis of oils of species with 
a high index of polyunsaturated fatty acids, 
as well as their mixtures, because the 
instability of these oils constantly 
complicates their identification. 
The determination of geographical origin of 
olive oil is essential for the traceability of 
the products and because the composition 
of the product is affected by their process 
conditions (Nenadis and Tsimidou, 2017; 
Wang et al., 2016). NIR combined with PLS-
DA was more efficient than fluorescence 
excitation-emission matrix spectroscopy 
technology to classify Argentinian extra-
virgin olive oil (Jiménez-Carvelo et al., 
2019). Similar results were found for 
NIR/SIMCA to classify Tunisian extra-virgin 
olive oil (Laroussi-Mezghani et al., 2015), 
NIR/PLSDA to classify Croatian extra-virgin 
olive oil (Peršurić et al., 2018) and NIR/LDA 
to classify Italian olive oil (Forina et al., 
2015) according geographical origin.  
What is questionable, perhaps, is the need 
for more representative and corroborative 
sampling. The time storage of oils, the type 
of olive cultivar and the process kind 
carried out for oil extraction must be 
considered (Binetti et al., 2017). These 
factors affect the composition of the oil, so 
the differences may be given not by the 
culture conditions of a specific place 
(geographical origin), but may be 
dependent on other factors. For instance, if 
different cultivars are used, it is very likely 
that the variations in composition are 
related to the type of cultivar, so the results 
cannot be conclusive to differences related 
to geographical origin.  
 
2.2 Coffee 
Coffee is one of the most consumed food 
species in the world. Among the varieties 
with greater economic importance is the 
Arabica coffee (Coffea arabica) and 
Robusta coffee (Coffea canephora) 
varieties (Thorburn-Burns et al., 2017). 
Both species have differentiated 
organoleptic characteristics, the most 

appreciated being the Arabica variety, with 
a higher market price compared to the 
robust variety. These variations in price are 
related to the most delicate form of Arabica 
coffee production, growing at heights 
between 600 - 2000 m (Barbin et al., 2014; 
Caporaso et al., 2018). Therefore, the 
identification of the variety of coffee beans 
represents a very important research 
focus. In addition, because coffee is 
consumed in powder, it can be adulterated 
at various stages of its supply chain, using 
lower value coffee or other food waste (i.e. 
barley). Table 2 summarized the last 
research in the NIR and HIS application for 
coffee authentication.  
Bona et al. (2017) used support vector 
machine (SVM) to compare NIR and FT-IR 
for classification Arabica coffee according 
geographical origin in Brazil. SVM in 
tandem with NIR spectral data allowed to 
classify correctly (100%) Arabica coffee 
samples. Similar results (sensitivity and  
specificity = 1.0) were found for identify 
geographical origin and genotype origin of 
Arabica coffee using PLS-DA in tandem 
with NIR (Marquetti et al., 2016). For its 
part, for Robusta coffee beans, FT-NIR 
coupled with self-organizing map (SOM) 
allowed to identify and classify Robusta 
coffee genotype origin (100% correct 
classification) (Luna et al., 2017). After, in 
Brazil, a new research compared proton 
transfer reaction mass spectrometry (PTR-
MS) and NIR to classify Arabica and 
Arabica/Robusta (rate no informed) coffee 
according geographical origin (5 cities) and 
farming system (conventional and organic) 
(Monteiro et al., 2018). NIR coupled with 
PLS-DA obtained a correct classification > 
80% for identify farming system, which is an 
advantage compared with PTR-MS due to 
low price, rapid analysis and minimal 
sample preparation.  More recently, in 
inter-laboratory analyses was confirmed 
the FT-NIR potential for classify Arabica 
and Robusta coffee from different 
geographical origin (2 continents, 9 
countries) (Giraudo et al., 2019). PLS-DA 
was a chemometric used to develop 
efficient classification models (correct 
classification > 93%) for classify coffee 
beans according continent origin and 
country origin. At same time, the results 
were confirmed for two laboratories and no 
significant difference (p < 0.05) was found, 
which allows to create more reliable and 
robust analytical methods.  
Variety identification (Robusta or Arabica) 
in green or roasted beans is important for 
food fraud control. Roasting coffee is an 
important stage for its consumption, 
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because roasting process intensifies the 
organoleptic properties of coffee beans. 
However, roasting also disguises the 
appearance of coffee beans, making 
identification difficult. (De Luca et al., 2016) 
studied the possibility of using NIR 
combined with the PLS-DA or SIMCA 
classifiers to identify the variety (Arabica or 
Robusta) of roasted coffee. Both classifiers 
proved to be efficient in differentiating 
between coffee varieties regardless of 
coffee origin (Table 2). On the other hand, 
portable NIR was used successfully to 
identify blends of Arabica coffee with 
Robusta coffee (in different roasting levels), 
corn, peels and sticks (Correia et al., 2018). 
PCA and PLS were chemometrics 
employed to identify the adulterated 
samples, obtaining a quantification limit 
(LOQ) of 5 – 8% w/w. Similar results (R2p = 
0.97) were found using FT-NIR spectral 

data coupled with PLS to detect Robusta 
coffee in Arabica coffee (Bertone et al., 
2016).  
Hyperspectral imaging (HIS) is powerful 
technique for coffee beans identification 
and characterization (Caporaso et al., 
2018; Zhang et al., 2013). Due to a big data 
provided by HIS, a variable selection to 
build a multispectral imaging system is 
essential for industrial application (Amigo 
et al., 2013). For Arabica and Robusta 
coffee discrimination was tested sparse 
methods (sPCA + KNN and sPLS-DA) using 
HIS data (Calvini et al., 2015). The sparse 
methods allow to perform variable selection 
at the same time as classification, giving 
parsimonious models. Both sPCA + KNN 
and sPLS-DA converged to the same 
important wavelengths, however, the 
analysis time for sPCA + KNN was higher 
(13.5 s) than sPLS-DA (< 0.1 s). 

 
Table 2 
NIR and HIS to coffee beans authentication 
 

Coffee variety Fraud control  Instrument Chemometrics Statistical parameters Reference 

Arabica 
Geographical 
origin 

NIR SVM 
Sensitivity=1.0 
Specificity=1.0 

Bona et al. 
(2017) 

Arabica  Authenticity  
Portable 
NIR 

PCA and PLS 
R2p=0.96 – 0.99 
RMSEP=2.8 – 6.6% 

Correia et 
al. (2018) 

Arabica 
Blends with 
Robusta coffee 

FT-NIR PLS 
R2p=0.97 
RMSEP=4.3% 

Bertone et 
al. (2016) 

Robusta and 
Arabica 

Geographical 
origin 

FT-NIR PLS-DA Correct classification > 93% 
Giraudo et 
al. (2019) 

Arabica and 
Arabica/Robusta 
blend 

Geographical 
origin 

NIR PLS-DA Correct classification > 61% 
Monteiro et 
al. (2018) Farming 

system 
NIR PLS-DA Correct classification > 80% 

Arabica and 
Robusta roasted 

Variety 
identification 

NIR 
PLS-DA 
 

Correct classification = 100% 
De Luca et 
al. (2016) 

NIR SIMCA Sensitivity and specificity > 90% 

Robusta and 
Arabica 

Variety 
identification 

NIR-HIS sPCA + kNN  

Efficiency prediction (test set) = 
100% 
Efficiency prediction (test image) 
= 86.9% Calvini  et 

al. (2015) 

NIR-HIS sPLSDA 

Efficiency prediction (test set) = 
100% 
Efficiency prediction (test image) 
= 80.2% 

Robusta and 
Arabica 

Variety 
identification 

NIR-HIS 
PLS-DA (4 
variables) 

Efficiency prediction (test set) = 
94.9% 
Efficiency prediction (test image) 
= 74 - 92.2% 

Calvini et 
al. (2017) 

NIR-HIS 
PLS-DA (32 
variables) 

Efficiency prediction (test set) = 
100% 
Efficiency prediction (test image) 
= 71 – 92.1% 

NIR-HIS 
sPLS-DA (2 
variables) 

Efficiency prediction (test set) = 
100% 
Efficiency prediction (test image) 
= 83.9 – 93.1% 

Robusta and 
Arabica 

Variety 
identification 

NIR-HIS 
Extreme 
Learning 
Machine  

Correct classification = 93.5% 
Bao et al. 
(2015) 

Robusta and 
Arabica 

Variety 
identification 

NIR-HIS SVM  Correct classification = 98% 
Zhang et al. 
(2018) 

Arabica 

Geographical 
origin 

NIR PLS-DA 
Sensitivity = 0.75 – 1.0 
Specificity = 1.0 Marquetti et 

al. (2016) Genotype 
origin 

NIR PLS-DA 
Sensitivity = 0.75 – 1.0 
Specificity = 0.93 – 1.0  

Robusta 
Genotype 
origin 

FT-NIR PLS-DA Correct classification = 82.9% 
Luna et al. 
(2017) 

FT-NIR SIMCA Correct classification = 99.6% 
FT-NIR SOM Correct classification = 100% 
FT-NIR SVM Correct classification = 99.6% 
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After, the same research group used four 
commercial filters: 1150 nm related to C-H 
aromatic second overtones, 1200 and 1250 
nm C-H aliphatic second overtone and 1400 
nm O-H first overtone of aliphatic, to build 
multispectral model from the data obtained 
from a hyperspectral image (Calvini et al., 
2017).  
The results (see Table 2) suggest that the 
multispectral model (4 variables) in tandem 
with filters (individual) + PLS-DA or filters 
(combined) + sPLS-DA are as efficient as 
the models built using full spectrum (150 
variables). However, the analysis time is 
considerably reduced, which is important 
for its online application. In the pixel-to-
pixel image classification, there is a shape 
effect of the coffee beans that are most 
noticeable in the prediction set. Although, 
in general, the classification was correct 
(100%), new investigations can be carried 
out to correct the shape effects, allowing a 
better prediction in each pixel of the image. 
These results were better to those found in 
previous works using NIR-HIS combined 
with Extreme Learning Machine (correct 
classification = 93.5%) (Bao et al., 2015) 
and NIR-HIS coupled with SVM (correct 
classification = 98%) (Zhang et al., 2018) 
using full spectra. 
 

2.3 Cereals 
Grains of cereals, wheat, rice, barley, oats; 
and its derivatives, such as derived flour, 
are important ingredients for the most 
important staple foods throughout the 
world, since they make foods such as 
breads, pastas, cakes and cookies 
(Murniece and Straumite, 2014). For this, 
the risk for the illicit activity associated with 
cereals and derived products, are part of a 
big problem because of the impact for 
everyone. Appropriate prevention 
measures can only be implemented if the 
nature and type of illegal activity is 
understood (Tähkäpää et al., 2015). 
Therefore, this research aims to determine 
and analyze the extent of reported cases of 
food adulteration in cereals and products to 
identify potential trends and frame the 
development of future empirical research in 
this area. In this case, optical techniques 
arise, such as the use of NIR and 
hyperspectral images, as efficient methods 
to control the quality of these foods.  
The adulteration of wheat flour using 
cheaper flours is a common fraud case. HSI 
overcomes the difficulties of the 
heterogeneity of the sample, allowing to 
efficiently detect flours of different grains. 
Methods based on HSI with multivariate 
analysis such as multivariate statistical 

process control method (MSPC) (Verdú et 
al., 2016) and PLS-DA (Ziegler et al., 2016) 
allowed to discriminate between pure 
wheat samples and adulterated samples. 
In many countries, including China, Japan 
and South American countries, rice (Oryza 
sativa L.) is one of the staple foods of their 
daily diet (Maione and Barbosa, 2018). Rice 
is a source of vitamins, minerals, fiber and 
many essential elements (da Silva et al., 
2018; Dang and Vasanthan, 2019). The 
determination of the geographical origin 
and variety of rice has been an increasing 
research line in recent years, especially in 
Asia region (Maione and Barbosa, 2018). 
And, although the analysis of isotopes and 
minerals have been quite decisive for the 
authentication of rice (Mo et al., 2017), NIR 
spectroscopy is shown as a promising 
technique (Table 3). 
NIR coupled with support vector data 
description (SVDD) was used to verify the 
black rice authenticity (Chen et al., 2018). 
SVDD showed a best performance (100% 
specificity and 94.2% sensitivity to identify 
authentic black rice) compared with k-
nearest neighbor data description (KNNDD) 
and GAUSS method. This study should be 
extended for all rice varieties and more 
chemometrics as PLS-DA and SIMCA must 
be used. On the other hand, diverse 
wavelength selection methods should be 
tested in order to reduce analysis time by 
creating multispectral models.  
In other research, the NIR potential was 
tested to identify and classify rice 
according farming system: organic or 
conventional (Xiao et al., 2018). PCA and 
PLS were used to analyze NIR spectral 
data. PLS showed a good performance 
(R2cv=0.8430 and RMSECV=0.1992) to 
identify organic and conventional rice. 
However, the PLS was constructed using 
pure samples and no wavelength selections 
was performed. Then, PLS-DA, KNN or 
SIMCA probably present a better 
discrimination capacity to classify rice 
according farming system, and new 
research should be drive in this sense. 
Hyperspectral imaging allowed identify and 
classify rice from different China’s regions 
(Sun et al., 2017). The spectral, texture and 
morphological features obtained of rice´s 
hyperspectral imaging were combined with 
SVM for classify rice according 
geographical origin. The features were 
tested individually and combined, being the 
spectral-texture-morphological model 
(based on 9 important wavelengths) better 
(correct classification = 91.67%) than other 
models. 
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Table 3 
NIR and HIS applied to cereal products authentication 
 

Product Fraud control Instrument Chemometrics 
Statistical 
parameters 

Reference 

Wheat 

Sorghum 

HSI 

Control of 
Multivariate 
Statistical 
Process 
(MSPC) 

R2p=0.95 

Verdú et al. 
(2016) 

Oat R2p=0.97 

Corn R2p=0.99 

Oat 

Barley 

HIS PCA-PLSDA 
Correct 
classification =0.96 

Erkinbaev 
et al. 
(2017) 

Wheat 

Rye 

Avatar 
Wheat 

Common wheat 

HIS FMCIA-PLSR 

R2p=0.97 
RMSEP=0.038 

Su and Sun 
(2017) 

Cassava flour 
R2p=0.98 
RMSEP=0.026 

Corn flour 
R2p=0.97 
RMSEP=0.036 

Organic 
spelt 
(Triticum 
spelta L.) 

Rye 

HIS 

PLSR 

R2p=0.96 

Su and Sun 
(2016) 

Organic wheat R2p=0.97 

Common spelt R2p=0.93 

Rye 
MLR 

R2p=0.96 

Organic wheat R2p=0.97 

Rice Geographical origin HIS SVM R2p=0.9167 
Sun et al. 
(2017) 

Rice Geographical origin HIS PLS-DA 
Correct 
classification = 99% 

Mo et al. 
(2017) 

Wheat 
grains 

Geographical origin NIR 

LDA 
Correct 
classification = 82% Zhao et al. 

(2013) 
PLS-DA 

Correct 
classification = 92% 

Wheat 
grains 

Geographical origin NIR PCA-PLS 
Correct 
classification = 85% 

Zhao et al. 
(2014) 

Corn Geographical origin NIR PLS-DA 
Correct 
classification = 
87.9% 

Zhou et al. 
(2015) 

Wheat 
Canada 
Western 
Red Spring 
(CWRS) 

Barley, Canola, Maize 

NIR - HIS 

SNV / K-
Nearest 
Neighbors / 
Naive Bayes 

Correct 
classification = 100 
% 

Ravikanth 
et al. 
(2015) 

Flaxseed / Oats / Rye / Soybean 

Broken Kernels / Buckwheat / 
Chaff / Stones / Wheat Spikelets / 
Wild Oats 

Deer Droppings / Rabbit 
Droppings 

Durum 
wheat 

Common wheat HIS - NIR PLS - DA Sensibilidad = 88.3 
Vermeulen 
et al. 
(2018) 

Wheat Authenticity NIR PLS - DA 
Sensibilidad = 90 
Especificidad = 100 
Exactitud = 95 

Ziegler et 
al. (2016) 

Cooked 
millet flour 

Soybean flour HIS - NIR LS - SVM 
Correct 
classification = 
98.30% 

Shao et al. 
(2018) 

Lentils Geographical origin FT - NIR PLS - DA 
RSQ = 0.96   
RMSECV = 0.40 

Revilla et 
al. (2019) 

 
The correct sample collection is essential 
to develop an analysis method based on 
spectral information, which should be 
represent the variability studied (i.e. 
geographical origin). For instance, if the 
aim is to differentiate by geographical 
origin, factors such as genetic variety, 
genotypes (cultivars) and year of harvest 
must be controlled. 
 

2.4 Meat and fish 
Adulteration in meat and meat products 
with undeclared animal species has 
generated concern among consumers, 
because these meats are considered an 
edible (i.e. horse meat in USA) or due to 
social taboos (i.e. pork meat in Mulsim and 
Jewish communities) (Boyacı et al., 2014; 
Monahan et al., 2018; Nakyinsige et al., 

2012). Perhaps the greatest likelihood of 
food fraud is found in meat products. 
Because the meat processing removes 
external morphological features of a 
muscle, which makes it difficult to identify 
the meat species in the processed product 
(Sentandreu and Sentandreu, 2014). Due to 
the dynamism of the meat industry, fast, 
reliable and robust methods are needed 
that allow the authentication of meat and 
meat products (Amaral et al., 2016; Kumar 
and Chandrakant-Karne, 2017). NIR and 
HIS are presented as powerful, non-
destructive, non-invasive, fast and reliable 
technologies for meat authentication 
(Aredo et al., 2017; Cheng et al., 2017). 
Table 4 shows the last research focused in 
meat and fish authentication.  
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The taste and texture of the meat varies 
depending on the type of muscle con-
sumed, and many times various undeclared 
muscles are mixed with fraudulent econo-
mic motivations. Hyperspectral images of 
Lamb muscles: Longissimus dorsi, Psoas 
major, Semimembranosus and Semiten-
dinosus, were acquired in order to classify 
according muscle type (Sanz et al., 2016). 
After testing different machine learning 
techniques, the linear Least Mean Squares 
(LMS) classifier showed the best result 
(96.67% correct classification). Nolasco et 
al. (2018) studied the use of NIR to classify 
different chicken parts: drumstick, breast 
and thigh. The linear discriminant analysis 
(LDA), random forest (RF), and support 
vector machine (SVM) algorithms were 
used and a correct classification of 97.5% 
was achieved. It should be noted that this 
research was conducted using a portable 
NIR, which is more attractive and less 
expensive industrially. 
Rady and Adedeji (2018) studied the 
adulteration of beef with chicken or pork 
and with vegetable protein using Vis-NIR-
HIS and NIR-HIS. Both sensors (Vis-NIR-HIS 
and NIR-HIS) showed to be efficient to 
classify pure samples of beef, chicken, 
pork, texturized vegetable protein (TVP) 
and wheat gluten (WG) (100% correct 
classification) and adulterated samples 
(96% using selected wavelengths). The 
adulterant identification was more difficult, 
but acceptable (69 – 100% correct classifi-
cation). Vis-NIR-HIS in selected wave-
lengths was more efficient [r(RDP)] for 
predict adulterant concentration in minced 
beef: 0.85 (1.77) for pork, 0.86 (1.95) for 
TVP, 0.86 (1.98) for chicken, 0.86 (1.87) and 
0.87 (1.64) for WG. In addition, Vis-NIR-HIS 
coupled with PLS regression allowed to 
quantify duck meat concentration in min-
ced lamb (R2p = 0.98) (Zheng et al., 2019).  
On the other hand, NIR coupled with one-
class classifier variant of the partial least 
squares method (OCPLS) and the soft 
independent modeling of class analogy 
(SIMCA) allowed to classify ground meat 
according specie origin (lamb, beef and 
pork) (Pieszczek et al., 2018). Therefore, it 
is possible that NIR coupled with any of 
these two classification techniques (SIMCA 
or OCPLS) is appropriate and feasible to 
identify ground beef according to its 
species at industrial level. Later, the 
potential of NIR to identify and classify beef 
and lamb meat adulterated with pork, 
chicken, Lidia breed cattle or foal was 
studied (López-Maestresalas et al., 2019). 
NIR spectral data in tandem with PLS-DA 
achieved a correct classification between 

78.95 - 100% in validation set. The adulte-
ration of lamb and beef with chicken meat 
was more difficult to access. However, the 
Lidia breed cattle and foal in minced beef 
could be detected at levels of adulteration 
above 2% and 1%, respectively. These 
results were better than those found to 
identify and quantify turkey meat in minced 
beef (fresh, frozen-thawed and cooked) 
using FT-NIR with PLS-DA (Sensitivity = 
0.84; specificity = 0.76) (Alamprese et al., 
2016). On the other hand, it was possible 
identify and classify (Correct classification 
= 94.2 – 100%) beef steaks according their 
ageing time (3, 7, 14 and 21 days post 
mortem) using Vis-NIR spectral data 
combined with PLS-DA (Moran et al., 2018). 
Also, the authenticity of Italian Valle 
d’Aosta Arnad Protected Designation of 
Origin (PDO) lard can be determine using 
NIR spectral data in tandem with PLS-DA 
(Sensitivity and Specificity = 94.4%), 
although with less precision than using 
volatile compound (VOC) or fatty acid (FA) 
analyses (Sensitivity and Specificity = 
100%) (Chiesa et al., 2016). For its part, FT-
NIR in tandem with SVM allowed to analyze 
and classify veal sausage adulterated with 
pork and pork fat (10 – 50% w/w) 
(Schmutzler et al., 2015). The results found 
in this work are quite relevant, since the 
method developed in the laboratory was 
tested in industrial and on-site instrumental 
setups, analyzing them successfully 
through their plastic packaging (75 - 100% 
correct classification).  
Currently, the fish production and 
marketing chain has been internationalized, 
with fish exported from developing to 
developed countries. NIR spectroscopy in 
tandem with SIMCA was used to classify 
tilapia fillets according to their 
geographical origin (China) (Liu et al., 
2015).  
The results showed that the NIR spectral 
information is able to classify, acceptably 
(Correct classification = 75 - 85%), between 
tilapia fillets from different regions of China 
(Guangdong Province, Hainan Province, 
Guangxi Province and Fujian Province). On 
the other hand, Vis-NIR-HIS was tested for 
classify fresh from cold-stored (4 °C for 7 
days) and frozen-thawed (−20 °C and −40 °C 
for 30 days) grass carp fish fillets (Cheng et 
al., 2015). SIMCA, PLS-DA, least squares-
support vector machine (LS-SVM) and 
probabilistic neural network (PNN) classi-
fiers were tested using full and important 
wavelengths (446, 528, 541, 596, 660, 759 
and 970 nm). 
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Table 4 
NIR and HIS to meat and fish authentication 
 

Meat product Fraud control  Instrument Chemometrics Statistical parameters Reference 

Lamb 
Muscle 
discrimination 

Vis-NIR HIS 
Linear least Mean 
Squares (LMS) 

Correct classification = 
96.67% 

Sanz et al. 
(2016) 

Chicken 
Muscle 
discrimination 

NIR 
LDA 
Random Forest 
SVM 

Correct classification = 97.5% 
Nolasco et al. 
(2018) 

Beef Adulteration 

VIS-NIR HIS 
SVM 
PLS 

Overall classification = 76 - 
95% 
R2p = 0.53 – 0.86 
RMSEP = 0.17 – 1.36 

Rady and 
Adedeji 
(2018) 

NIR-HIS 
SVM 
PLS 

Overall classification = 81 - 
95% 
R2p = 0.53 – 0.86% 
RMSEP = 0.26 – 0.55% 

Ground meat 
Specie 
identification 

NIR SIMCA 
Sensitivity = 96 - 100% 
Specificity = 80 – 99% 

Pieszczek et 
al. (2018) 

NIR 

one-class classifier 
variant of the partial 
least squares method 
(OCPLS) 

Sensitivity = 95 - 100% 
Specificity = 73 – 99% 

Lamb and Beef Adulteration NIR PLS-DA 
Correct classification = 78.95 
– 100% 

López-
Maestresalas 
et al. (2019) 

Lamb Adulteration Vis-NIR-HIS PLS 
R2p = 0.98 
RMSEP = 2.51% 

Zheng et al. 
(2019) 

Veal sausage Adulteration FT-NIR SVM 
Correct classification = 75 – 
100% 

Schmutzler et 
al. (2015) 

Beef steaks Ageing time  Vis-NIR PLS-DA 
Correct classification = 94.2 – 
100% 

Moran et al. 
(2018) 

Lard Authenticity NIR PLS-DA 
Sensitivity and specificity = 
94.4% 

Chiesa et al. 
(2016) 

Fresh, frozen-
thawed and 
cooked 
minced beef 

Adulteration FT-NIR 
PLS-DA 
PLS 

Sensitivity = 0.84 
Specificity = 0.76 
R2p = 0.884 
RMSEP < 10.8% 

 

Pork muscle 
Fresh and 
frozen-
thawed 

Vis-NIR-HIS 

Gray-level-gradient 
co-occurrence matrix 
(GLGCM) + 
probabilistic neural 
network (PNN) 

Correct classification = 90.91 
– 93.14% 

Pu et al. 
(2015) 

Pork muscle 
Fresh and 
frozen-
thawed 

Vis-NIR-HIS 

PLS-DA based on 
fused variables 
combining spectra at 
the optimal 
wavelengths and 
textures 

Correct classification = 
97.73% 

Ma et al. 
(2015) 

Chicken 
Farming 
system 

Vis-NIR-HIS 

Gray-level-gradient 
co-occurrence matrix 
(GLGCM) + radial 
basis function-
support vector 
machine (RBF-SVM) 

Correct classification = 
93.33% 

Xiong et al. 
(2015) 

Tilapia fillets 
Geographical 
origin 

NIR SIMCA 
Correct classification = 75 – 
85% 

Liu et al. 
(2015) 

Salmon 
Farming 
system 

Vis-NIR-HIS SVM Correct classification = 98.2% Xu et al. 
(2017) NIR-HIS SVM Correct classification = 92.7% 

Carp 

Fresh, cold-
stored, 
frozen-
thawed 

Vis-NIR-HIS LS-SVM 
Correct classification = 90 – 
100% 

Cheng et al. 
(2015) 

 

1st derivate pre-processing technique and 
LS-SVM showed the best performance 
using full wavelengths (94.29% correct 
classification) and important wavelengths 
(91.43% correct classification). Later, (Xu 
et al., 2017) studied and compared the 
potential of computational vision and Vis-
NIR-HIS for classify salmon according 
farming system: organic and conventional. 
Vis-NIR-HIS combined with SVM was more 
successful (98.2% correct classification) 
than using computational vision (83.6% 
correct classification using PLS-DA) or NIR-
HIS (92.7% correct classification using 
SVM) to classify salmon.  

2.5. Honey 
Honey is probably one of the most complex 
and consumed natural food (Pita-Calvo et 
al., 2017). Bees (Apis mellifera) collect 
nectar, plant secretions or excretions of 
plant‐sucking insects to produce honey, 

after complex enzymatic process. Honey is 
a complex mixture of carbohydrates (70-
80% w / w), water (10-20% w / w) and a 
large number of minor components 
(Ouchemoukh et al., 2007). 
Fructose/glucose and fructose/glucose 
disaccharide are the main carbohydrates in 
honey (65-80% w/w) (de la Fuente et al., 
2006). Therefore, a common adulteration 
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practice is through mislabeling and mixing 
sugar syrup and lower-quality honeys or 
production honey using sugar instead of 
nectar.  
In this context, NIR is probably a most 
sensitive spectroscopy technique to detect 
honey fraud (Naila et al., 2018). However, 
some studies show the efficiency of hyper-
spectral images to identify adulteration and 
the origin of honey. Table 5 summarizes the 
works that apply NIR and hyperspectral 
images to determine honey authenticity. 
The chemical composition and nutritional 
properties of honey make it a healthy and 
desired food. Therefore, its market value is 
more expensive than common sweeteners 
such as sugar beet, cane, inverted syrups 
and syrups with high fructose content (Pita-
Calvo et al., 2017). But, the adulteration of 
honey with inverted syrups or high fructose 
syrups is usually difficult to detect, because 
they mimic the sucrose-glucose-fructose 
profile of honey (Paradkar and Irudayaraj, 
2002). NIR is presented as a potential tool 
to identify adulterated honey with high 
fructose syrups. Discriminant methods are 
main chemometrics to classify unknown 
honey samples into clusters on the basis of 
similarities (Sivakesava and Irudayaraj, 
2001). NIR spectral data in tandem with 

LDA allowed to identify high fructose corn 
syrup in honey (CCR = 100%) and to predict 
adulterant concentration (Ferreiro-
González et al., 2018). For high fructose 
corns syrup and maltose syrup adulterants, 
a multispectral model based on NIR data 
combined with CARS/PLS-Da achieved high 
precision (CCR = 88.3%) (Li et al., 2017). 
CARS allows to select important 
wavelengths, to build multispectral model 
for on-line applications (Li et al., 2009). 
However, multispectral models must be 
equal or more accurate than models using 
whole spectrum. On the other hand, NIR 
spectral data obtained using fiber optic 
immersion probe (transmittance mode) was 
used to build PLS models for detecting 
accurately high fructose corn syrup in 
honey (RMSECV = 1.48; R2CV = 0.987) 
(Bázár et al., 2016). Later, Başar and 
Özdemir (2018) built regression models to 
detect beet sugar and corn syrup in honey. 
Two regression chemometrics was tested: 
(1) PLS and (2) Genetic‐algorithm‐based 

inverse least squares (GILS) (Karaman et 
al., 2009). Both showed similar accuracy to 
predict adulterant concentration, but 
multispectral model can be constructing for 
on-line applications.  

 
Table 5 
NIR and HIS to Honey authentication 
 

Fraud control  Instrument Chemometrics Statistical parameters Reference 

Floral origin VIS/NIR-HSI 

Radial basis function 
(RBF) 

Accuracy = 94% 

Minaei et al. (2017) 
SVM Accuracy = 93% 

Random forest Accuracy = 93% 

Floral origin NIR PLS RPD = 2.1 – 3.5  
Escuredo et al. 
(2015) 

Botanical origin NIR PLS-DA Accuracy = 85 – 100% Gan et al. (2016) 

High fructose corn 
syrup 

VIS/NIR 

LDA 
Correct classification 
= 100% Ferreiro-González et 

al. (2018) 
PLS 

R2p = 0.98 
RMSEP = 4.71% 

High-fructose corn 
syrup  

NIR CARS/PLS-DA 
Correct classification 
= 86.3% 

Li et al. (2017) 

Maltose syrup NIR 

CARS/PLS-DA 
Correct classification 
= 96.1% 

Li et al. (2017) 

PLS 
R2p = 0.90 – 0.98 
RMSEP = 1.78 - 4.04% 

Fructose-glucose VIS/NIR - HSI 

ANN Accuracy = 95% 

Shafiee et al. (2016) 

SVM Accuracy = 92% 

LDA Accuracy = 90% 

Fisher Accuracy = 89% 

Parzen Accuracy = 84% 

High fructose corn 
syrup 

NIR in transflectance 
mode 

PLS 
R2cv = 0.98 
RMSECV = 1.48 

Bázár et al. (2016) 

Glucose and 
fructose 

Benchtop NIR PLS-DA Accuracy = 96.9% 

Guelpa et al. (2017) Portable NIR PLS-DA Accuracy = 93.7% 

Mobile NIR PLS-DA Accuracy = 87.5% 

Beet sugar and 
corn syrup 

NIR 

Genetic‐algorithm‐
based inverse least 
squares (GILS)  

RMSEP= 0.90 – 2.19% 
R2p = 0.99  Başar and Özdemir 

(2018) 
Partial least squares 
(PLS) 

RMSEP= 1.18 – 2.89% 
R2p = 0.97 – 0.99 

Jaggery 
adulterants 

NIR PLS 
RMSEC= 0.0075 
R2c = 0.99 

Kumaravelu and 
Gopal (2015) 

Glusose NIR PLS 
RMSECV= 4.52% 
R2cv = 0.85 
RPD = 2.53 

Mouazen and Al-
Walaan (2014) 
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For detecting glucose and fructose in 
adulterated honey sample, more one of 
discriminant analysis was tested 
accurately. PLS-DA was selected as 
chemometrics tool to build discriminant 
models for authenticity of South African 
honey based on prediction of glucose and 
fructose concentrations (Guelpa et al., 
2017). This work shows that the loss of 
precision is minimal compared to portable 
NIR with table NIR, which industrially is 
quite important. Similar results was showed 
for glucose (Mouazen and Al-Walaan, 2014) 
and jaggery (Kumaravelu and Gopal, 2015) 
adulterants in honey using NIR spectral 
data in tandem with PLS regression. On the 
other hand, VIS/NIR-HSI showed a good 
performance to detect honey adulterated 
with fructose and glucose using SVM, LDA 
and ANN (Shafiee et al., 2016). Chemical 
maps based on ANN model were built for 
visual identification of sample adulteration. 
However, the large amount of information 
offered by HSI makes its industrial 
application difficult to implement. New 
works should be directed to identify the 
wavelengths important for the identification 
of each adulterant. Thus, the imple-
mentation of HSI in the honey supply chain 
is less costly and easier to manage. 
Honey can be unifloral or multifloral. 
Unifloral honey is more expensive, due to 
its low production, therefore its 
susceptibility to adulteration is higher. For 
this, there is a protected designation of 
origin (PDO) and protected geographical 
indication (PGI) for honey (Cajka et al., 
2009), and its identification is economically 
important. For more information on 
denomination of origin regulations, diverse 
analytical methods for authentication and 
analysis of honey composition you can 
access the reviews of Pita-Calvo et al. 
(2017), Trifković et al. (2017), Soares et al. 
(2017), Naila et al. (2018), Wu et al. (2017), 
among others.  
Pollen types (Castanea, Eucalyptus, Rubus 
and Erica) related with honey floral (or 
botanical) origin was successfully 
determinate using NIR in tandem with PLS 
(Escuredo et al., 2015). Similar results 
(CCR=100%) for botanical origin was 
reported using NIR and iPLS (Gan et al., 
2016) (Table 4). Later, VIS/NIR-HIS 
combined with radial basis (RBF), SVM and 
Random forest showed similar accuracy for 
detect honey floral origin (Minaei et al., 
2017).  Since hyperspectral imaging is a 
combination of machine vision and 
spectroscopy, the adulterant distribution 
can be observed in sample, and their use 
could be expanded to associate chemical 

image with adulterant or adulterant/honey 
features.  
 

3. Data fusion in food authentication 
The data fusion strategy has allowed 
obtaining, in many cases, more precise and 
conclusive results than using several 
techniques separately (Borràs et al., 2015; 
Li et al., 2019). Data fusion can be done in 
three levels (Figure 2) (Biancolillo et al., 
2014): 
(1) Low-level: a single matrix is created that 
includes all the raw data of the analyzed 
sources, as long as the data of the sensors 
are proportional (same row and column 
number), being observations of similar 
physical quantities (Banerjee et al., 2016; Di 
Rosa et al., 2017). 
(2) mid-level: the data obtained from each 
sensor are analyzed separately and 
relevant characteristics are extracted from 
each information block. Then, the 
information is joined in a single matrix to 
perform the multivariate analysis (Borràs et 
al., 2015). 
(3) high-level: the information is analyzed 
separately and a model is generated for 
each block of data, and then, the responses 
are combined for a final fused response 
(Doeswijk et al., 2011). Perhaps the 
majority vote method is the easiest and 
most widely used in food analysis (Di Rosa 
et al., 2017). 
 

 
 
Figure 2. Data fusion approach for detecting food fraud. 
 

Data fusion has extended in various areas 
such as intelligence system design (Hong et 
al., 2003), image processing (Zhu and 
Basir, 2006) and food analysis (included 
authentication) (Ballabio et al., 2018; 



-154- 

 

Sanaeifar et al., 2018). Initially, the data 
fusion strategy was based on two data 
blocks (i.e. spectral and textural data 
obtained from hyperspectral imaging) 
(Xiong et al., 2015), but  now, the literature 
reports researches based on fusion data 
using three (Borràs et al., 2016; Di Rosa et 
al., 2017), four (Erich et al., 2015) and even 
five techniques (Biancolillo et al., 2014). In 
this section we summarized and described 
the researches based on fusion data 
strategy for food authentication using NIR 
or HIS combined with other analytic 
techniques.  
Low-level data fusion showed good 
performance for classify black, green, 
white, yellow, dark, and oolong teas 
(Dankowska and Kowalewski, 2019). For 
this purpose, UV–Vis, synchronous 
fluorescence and NIR spectroscopies 
(individually and fused) were combined with 
Linear Discriminant Analysis (LDA), 
Quadratic Discriminant Analysis (QDA), 
Regularized Discriminant Analysis (RDA) 
and Support Vector Machine (SVM). Data 
fusion model based on NIR and UV-Vis in 
tandem with SVM presented the lowest 
classification error (<1.4%) of tea samples. 
However, it must be considered that low-
level data fusion requires a greater amount 
(time) calculation, and may not compensate 
the non-essential variance obtained by 
adding the same blocks (Sun et al., 2017). 
On the other hand, data fusion based on FT-
Raman and NIR spectral (middle- and high-
level) in tandem with Soft Independent 
Modelling of Class Analogy (SIMCA) were 
used for classify hazelnut paste adulterated 
with almond (Márquez et al., 2016). 
Individually, FT-Raman and NIR showed 
sensitivity and specificity values between 
75 – 100%. While, the data fusion in mid-
level and high-level showed best 
performances for sensitivity and specificity: 
96 – 100% and 88 – 100%, respectively. Mid-
level data fusion based on NIR data 
combined with high-resolution mass 
spectrometry also obtained good 
performance to classify sulfur-fumigated 
Chinese herb using (Dai et al., 2018). 
Similar results (100% correct classification 
in test samples) were found using mid-level 
data fusion based on NIR and MIR spectral 
data for identification of rhubarb (Sun et al., 
2017). The mid-level data fusion is more 
efficient than low-level data fusion, since by 
previously selecting the relevant variables 
of each sensor, the calculation time is 
reduced. 
Forina et al. (2015) used data fusion 
strategy to combine artificial nose, NIR and 
UV–visible spectroscopy for authentication 

of the PDO Chianti Classico olive oil. 
Individually, NIR spectral data (pre-treated 
by 1st derivate) presented the best 
performance with 100% for sensitivity and 
specificity. Great results were achieved 
(only 3 false positives) using data fusion 
combining 5 variables (3 NIR + 1 UV-visible 
+ 1 artificial nose) selected by Stepwise-
Linear Discriminant Analysis (STEP-LDA). 
In this specific case, NIR spectral data is 
enough to classify correctly PDO Chianti 
Classico olive oil. Later, NIR and mid 
infrared (MIR) spectroscopy were 
combined using data fusion (low-, mid- and 
high-level) for the quantification of 
rapeseed oil in olive oil blends (Li et al., 
2019). PLS regression models were 
constructed using the three conceptions 
(low-, mid- and high-level) and using the 
spectral data of each technique separately. 
The lowest RMSEP (2.86) and highest R2p 
(0.988) was obtained for high-level data 
fusion strategy, being the most reliable 
technique for quantitative analysis. Similar 
results (accuracy 99% is test samples) 
were found using high-level data fusion 
based on Raman + NIR + Proton Transfer 
Reaction – Time of Flight – Mass 
Spectrometry (PTR-MS) in tandem with 
PLS-DA for identify and classify 8 Italian 
honey botanical varieties (Ballabio et al., 
2018). One of the advantages of using high-
level data fusion is its flexibility, since 
classification models do not need to be 
constructed using the same set of samples 
(Callao and Ruisánchez, 2018).  
Hyperspectral images have the advantage 
of providing spectral and spatial 
information, so the fusion of data consists 
of obtaining characteristics of the image 
(i.e. texture) and combining it with the 
spectral data. Vis-NIR-HIS is also able to 
differentiate between frozen and frozen-
thawed meat samples. Simultaneously, two 
investigations showed the ability of Vis-NIR-
HIS to classify between fresh and frozen-
thawed pork Longissimus Dorsi muscles by 
combining spectral information and textural 
features (Table 3). Pu et al. (2015) used six 
features wavelengths (400, 446, 477, 516, 
592 and 686 nm) and textural features 
obtained by histogram statistics (HS), gray 
level co-occurrence matrix (GLCM) and 
gray level-gradient co-occurrence matrix 
(GLGCM). The selected wavelengths and 
textural features obtained by GLGCM were 
integrated for in a probabilistic neural 
network (PNN) model (classification rate = 
90.91 - 93.14%). For its part, Ma et al. (2015) 
used eight important wavelengths (624, 
673, 460, 588, 583, 448, 552 and 609 nm) 
and 45 textural features obtained by 
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GLGCM to obtain the best correct 
classification (97.73%) based on PLS-DA. 
On the other hand, gray level-gradient co-
occurrence matrix (GLGCM) selected 35 
textural features, later they were fusion 
with HIS spectral data to differentiate 
successfully (93.3% correct classification) 
between free-range and broiler chicken 
meats  (Xiong et al., 2015). These studies 
suggest that the fusion of spectral 
information and textural characteristics of 
hyperspectral images can improve the 
discrimination capacity of classification 
models.  
 

4. Chemometrics in food authentication 
Chemometrics methods are an analytical 
strategy to analyze the spectral information 
and generate mathematical models to 
address the problems related to food fraud 
(Callao and Ruisánchez, 2018). NIR and HSI 
provide a large amount of complex 
information, which often cannot be used in 
its gross form to generate discriminant / 
regression models (Pasquini, 2018). In 
addition, spectroscopic devices can 
generate information with defects such as 
noise, edge effect, light scattering and base 
line shift (Amigo et al., 2015). First, spectral 
data should be corrected for improve 
model performance. The most used 
espectral pre-processes are: (1) multipli-
cative scatter correction (MSC) and (2) 
standard normal variate (SNV) for reducing 
the spectral variability caused by 
scattering effects (Rinnan et al., 2009), and 
(3) Norris-Williams (NW) derivates and 
Savitzky-Golay polynomial derivative filters 
for smoothing spectra, removing variations 
in baseline and resolution of overlapping 
peaks is used Norris-Williams (NW) 
derivates and Savitzky-Golay polynomial 
derivative filters (Brown et al., 2000). This 
pre-processing spectral tools were 
successfully applied for treating NIR and 
HSI spectral data in order to generate 
discriminant/regression models for food 
authentication. However, care must be 
taken with the application of pre-process 
algorithms, since vital information can be 
compromised. Therefore, it is important 
that the analyst knows the conditions of the 
sample and can determine if the pre-
process has not compromised the analysis. 
In addition, some works show, erroneously, 
combinations of pre-process algorithms 
that were designed to correct the same 
spectral defect (as SNV and MSC). This 
places multidisciplinary research as an 
essential pillar that allows us to omit basic 
errors due to lack of knowledge of a 
specific technique. 

Previous discriminant/regression model 
established, exploratory analysis is com-
monly performed.  Among the unsupervised 
analyzes, principal component analysis 
(PCA) has been the most used for analysis 
of spectral data NIR or HSI for food 
authentication purposes (See Tables 1 – 5). 
PCA is a technique that reduces 
information by creating some new variables 
called principal components (PC) from a 
linear combination of the original variables 
(Borràs et al., 2015). PCA allows to observe 
if the spectral characteristics allow the 
grouping or separation into groups of 
samples with specific characteristics 
defined previously (i.e. geographical 
origin). If there are no differences between 
the groups of samples analyzed, it should 
be considered to reassess the objectives of 
the work or verify the information referring 
to the response variable with which the 
model is being fed. 
After, discriminant models or regression 
model are established to identify food 
fraud. There is a great diversity of 
discriminant and regression methods that 
allow generating mathematical models to 
detect fraud. A classification or prediction 
algorithm is not exclusive to a group of data 
or to a specific case of fraud.  
In several cases, research on food 
authentication are driving to build only 
classification models. The main 
classification supervised techniques are: 
partial least squares discriminant analysis 
(PLS-DA), linear discriminant analysis 
(LDA) (Vandeginste et al., 1998) and 
quadratic discriminant analysis (QDA); k 
nearest neighbours (KNN) (Callao and 
Ruisánchez, 2018), soft independent 
modelling of class analogy (SIMCA) 
(Moseholm, 1988), support vector machines 
(SVM) (Sliwinska et al., 2014), random 
forest (Xu et al., 2017) and artificial neural 
networks (Mu et al., 2016). These models 
are used to establish specific classes 
based on the similarities and differences of 
the samples analyzed. Then, an external 
sample can be classified or not in a certain 
class. The choice of classifier happens not 
only for having a high precision, but also for 
reducing the computational time of 
analysis. Many of the models studied in this 
review have been created using the full 
spectrum. However, it is necessary that 
new studies be directed to evaluate 
methods of selection of variables in order 
to establish more precise models. 
Between regression algorithms, partial 
least square (PLS) is the most popular 
supervised techniques used to build 
regression models based on spectral data 
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for food identification (see Table 1 – 5). PLS 
goal is to analyze or predict a set of 
dependent variables from a set of 
predictors (independent variable) which 
are rotated to ensure maximum correlation 
efficiency (Alamprese et al., 2013). 
Therefore, PLS generates a mathematical 
model that correlates linearly the spectral 
variables with the variable of interest (i.e. 
adulterant concentration) (Alamprese et al., 
2016). These linear combinations are called 
latent variables, and they have a great 
predictive capacity, especially the first 
latent variables (Kumar and Chandrakant- 
Karne, 2017). It is important, especially for 
HSI applications, that PLS models be cons-
tructed using only significant wavelengths. 

 
5. Future trends 
This review summarizes and analyzes the 
latest advances in the use of NIR and HSI 
for food authentication. In the case of NIR, 
although it seems to be a fairly mature 
technique (Pasquini, 2018), it can still be 
explored for new foods and new forms of 
fraud. For its part, HSI is a technique still in 
exploration for food authentication 
purposes. Although HSI can have the 
advantage of incorporating spatial 
information, processing that information is 
very tiring, time consuming and impractical 
for industrial applications. Future works 
based on HSI, but also on NIR, must 
generate multispectral models that allow 
the technology to be explored at an 
industrial level. Multispectral models are 
constructed with the appropriate selection 
of variables, therefore, new methods in the 
selection of variables should be explored.  
On the other hand, although the developed 
models based on NIR and HSI may have 
outstanding results, they may not be 
conclusive. Some limitations in the 
applications of both techniques have been 
overcome using data fusion. The fusion of 
data, at a certain level, allows to obtain 
more robust and precise models. Perhaps 
an important challenge in the next works is 
to establish new ways to merge groups of 
data to obtain more precise results. 
Regarding the manageability of NIR and 
HSI devices. It is expected that in the not 
too distant future, smaller portable devices 
will be available. These devices must be 
manageable, cheap, robust and easy to 
apply (Crocombe, 2018). The loss of 
precision in portable devices is a topic to 
be addressed by the scientific community. 
Therefore, it is necessary to publish more 
research using portable devices, 
considering the influence of temperature 
and the movement of the sample in on-line 

system. Thinking about the final consumer, 
the NIR and HSI devices must be 
implemented in smartphone (Kartakoullis et 
al., 2019), with a friendly language and an 
interface that is easy to apply. In addition, 
devices should respond to different food 
groups. For this, it is important to build 
these equipment using important wavelen-
gths for faster and more accurate analysis. 
 

6. Conclusions 
The application of NIR and HSI for food 
authentication has gained more interest in 
recent years. Both techniques require a 
minimum or no sample preparation, are 
non-invasive, do not use reagents ("green 
analytical method") and are quite reliable. 
The spectral information of NIR and HSI 
combined with chemometrics are generally 
sufficient to create mathematical models to 
identify geographic origin, farming system, 
genetic variety and adulterated samples. 
The ease of obtaining NIR data allows it to 
be the technique with the greatest 
industrial proximity. Although there are still 
challenges for its implementation in large-
scale production lines. For its part, HSI can 
overcome the limitations of the 
heterogeneity of the sample and for certain 
cases obtain a greater amount of valuable 
information to detect food fraud. Most 
papers report models based on HSI 
information using the full spectrum. What 
would not be industrially viable, therefore, 
multispectral models are usually a very 
useful solution. When both techniques, NIR 
and HSI, do not reach the expected results 
individually, the data fusion strategy is 
shown as a promising alternative. The 
portability of the equipment and the remote 
access via Wi-Fi or Bluetooth will allow 
fraud control to be carried out throughout 
the production chain. In addition, network 
connections will allow NIR and HSI devices 
to record information on the network, 
becoming part of the "Internet of things". 
Finally, the studies registered in this review 
are mostly laboratory-level applications, 
therefore, it is very likely that with the 
continuous development of technology, 
more manageable and precise NIR and HSI 
devices allow industrial studies. 
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