Numerical simulation of velocity field in a arteriouvenous fístula

Authors

DOI:

https://doi.org/10.17268/sel.mat.2019.01.12

Keywords:

Arteriovenous fistula, Velocity field, CFD

Abstract

The objective of this study is to analyze the hemodynamic factors of flow in an arteriovenous fistula (AVF). The geometric model of the AVF is obtained virtually from a computed tomography. In the mathematical model, which simulates blood flow in the AVF, it is considered a non-Newtonian fluid, incompressible and transient laminar flow. The flow behavior in the AVF is given by the blood velocity in five points corresponding to the mass flow in the systolic phase and in the diastolic phase. The numerical simulation of the velocity field in the systolic phase
presented greater intensity of axial and radial recirculations. The presence of recirculations allows figurative elements to collide excessively in the wall of the endothelium

References

Sigovan, M. et al. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD, Annals of Biomedical Engineering 41(2013) 657-668.

Takemoto, A. Y., Okubo, P., Bedendo, J., and Carreira, L. Avaliacao da qualidade de vida em idosos submetidos ao tratamento hemodialítico, Rev. Gaúcha Enferm. 32 (2011) 256-262.

Veloso, R. L. M. Efeitos da hemodiálise no campo subjetivo dos pacientes renais crónicos, Cógito 3 (2001) 73-82.

Saran, R. et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States, American Journal of Kidney Diseases 71 (2018) A7.

Koepe, G. B. O., and Araújo, S. C. A percepcao do cliente em hemodiálise frente a Fístula artério venosa em seu corpo, Acta Paulista de Enfermagem 21(2008) 147-151.

Toregeani, J. F., et al. Avaliacao da maturacao das Fístulas arteriovenosas para hemodiálise pelo eco-Doppler colorido, Jornal Vascular Brasileiro v. 7(2008) 203-213.

Lok, C. E. Fistula First Initiative: Advantages and Pitfalls, Clinical Journal of the American Society of Nephrology 2 (2017) 1043-1053.

Bassiouny, H. S., et al. Anastomotic intimal hyperplasia: mechanical injury or flow induced, Journal of Vascular Surgery 15 (1992) 708-716.

Ene-lordache, B., et al. Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis, Journal Biomechanical Engineering 123 (2000)284-292.

Niemann, A. K., et al. Computacional Fluid Dynamics Simulation of a-v Fistulas: From MRI and Ultrasound Scans to Numeric Evaluation of Hemodynamics, The Journal of Vascular Access 13 (2011) 36-44.

C¸ engel, Y. A., and Boles, M. A. Termodinámica, McGraw-Hill, Sao Paulo, ed. 5, 2006.

Bessa, K. L., et al. Análise comparativa de fluxo em Fístula arteriovenosa, 2004. 169 f. Dissertacao (Mestrado em Engenharia Mecanica) á Escola Politécnica da Universidade de sao Paulo, sao Paulo, 2004.

Cho, Y., and Kensey, R. Efeitos da viscosidade Nao newtoniana do fluxo sanguíneo em um vaso arterial doente. Parte 1: Fluxos estáveis, Biorheology 28(1991) 241-262.

Carroll, J., Varcoe, R. L., Barber, T., and Simmons, A. Reduction in anastomotic flow disturbance within a modified end-to-side arteriovenous fistula configuration: Results of a computational flow dynamic model, Nephrology 24 (2019) 245-251.

Sinavesan, S., How, T. V., and Bakran, A. Sites of stenosis in AV fistulae for haemodialysis access, Nephrology 14 (1999) 118-120.

Published

2019-07-21

How to Cite

A. Santos, W. B., M. Borjas, S. D., C. Moreira, R. W., & L. Bessa, K. (2019). Numerical simulation of velocity field in a arteriouvenous fístula. Selecciones Matemáticas, 6(01), 98-107. https://doi.org/10.17268/sel.mat.2019.01.12