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Abstract
In this paper we study the effect of vaccination control, medical treatment and spraying to malaria epidemic model.
Firstly the non-control malaria epidemic model is generated and the equilibrium point is determined. Afterward,
the stability of equilibrium point in previous model is investigated. The research is continued by deciding the
optimal control of malaria epidemic model and minimizing the cost. The results show that the control effect can
reduce the subpopulation of infected human and mosquitoes.
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1. Introduction. Malaria is one of the infectious diseases in which the control efforts to be a global commit-
ment to the Millennium Development Goals (MDGs) [9, 10, 12–14]. Malaria is caused by Plasmodium parasites
that live and breed in human red blood cells that are transmitted by Anopheles female mosquitoes, which can
affect all people, both men and women in all age groups from babies, children and adults [3, 24–28, 30]. Approxi-
mately 80% of districts or cities in Indonesia including the category of malaria-endemic areas and more than 45%
of Indonesia’s population live in malaria-endemic areas [17]. Several attempts were made to prevent the spread
of malaria such as giving vaccines and treatment among the human population and also spraying the mosquito
population.

From several models of controlling the spread of diseases that involve the mosquito population and human
population, the control strategy is focused on mosquito populations, such results from Thom, et al [28] which
discusses the application of optimal control to prevent the spread of dengue fever with sterilization control insects
and insecticides in the mosquito Aedes aegypti. Sachs [27] states that efforts to eradicate the disease is not enough
to eliminate the mosquito as its medium spread of the disease. However, control strategies involving the control of
the human population also need to be involved in mathematical modeling, such as results by Makinde, et al [18]
that discusses optimal control models to control malaria epidemic by quarantine and treatment in humans as well
as spraying the mosquitoes. Then, Okosun [22] examined the optimal control of malaria epidemic models with
vaccination control and treatment in humans.

From the research of Makinde [18], the quarantine is done by separating the latent and the vulnerable infected
population so as to prevent and treat human that are infected with malaria. Then, the control from vaccination is not
applied to the studied model, whereas the research on vaccination to prevent malaria epidemic is growing rapidly.
In Okosun [22], the reduction of intervention, such as spraying using chemicals to eradicate the mosquitoes are not
applied in the model under study. In this paper, it is discussed the model of epidemic malaria control vaccination
and treatment in humans, such as spraying the mosquito population that has not been discussed in the previous

∗Engine Department, Sekolah Tinggi Ilmu Pelayaran Jakarta, Indonesia (fahrudinuin@gmail.com),
†Mathematics Department, Universitas Gadjah Mada, Indonesia (syalmah@yahoo.com),
‡Port and Shipping Department, Sekolah Tinggi Ilmu Pelayaran Jakarta, Indonesia (aprilgunawan22@gmail.com).

189

http://revistas.unitru.edu.pe/index.php/SSMM
https://orcid.org/0000-0003-4976-7221
https://orcid.org/0000-0002-5774-4321
https://orcid.org/0000-0001-9444-7599
https://creativecommons.org/licenses/by-sa/4.0/
 http://dx.doi.org/10.17268/sel.mat.2019.02.05


190 Fahcruddin, I., et al.- Selecciones Matemáticas. 2019; 05(02):189-195.

paper. Control that using vaccination and treatment applied to human populations to reduce the number of patients
with malaria and deaths from malaria. Then spraying with chemicals applied to reduce the mosquito population,
especially mosquitoes that infected with malaria. In addition, the cost of implementing the control aspect is also
minimized so the efforts to eradicate malaria done efficiently and optimally.

2. Malaria Epidemic Model.. The model sub-divides the total human population [5,7], denoted by Nh, into
sub-populations of susceptible individuals (Sh), those exposed to malaria (Eh), individuals with malaria symtoms
(Ih), recovered human (Rh) and vaccinated individuals (Vh). So that Nh = Sh + Eh + Ih +Rh + Vh.

The total vector (mosquito) population, denoted by Nv , is subdivided into susceptible mosquitoes (Sv),
mosquitoes exposed to the malaria parasite (Ev) and infectious mosquitoes (Iv). Thus, Nv = Sv + Ev + Iv.

FIGURE 2.1. Flow diagram for malaria disease transmission

The model is given by the following system of ordinary differential equations:

d

dt
Vh(t) = u1(t)Λh − (µh + σ + λh(t))Vh(t)(2.1)

d

dt
Sh(t) = (1− u1(t))Λh + κRh(t)− λh(t)Sh(t) + σVh(t)− µhSh(t) + (θ + τu2(t))(1− ρ)Ih(t)(2.2)

d

dt
Eh(t) = λh(t)Sh(t) + bλh(t)Vh(t)− (α1 + µh)Eh(t)(2.3)

d

dt
Ih(t) = α1Eh(t)− (θ + τu2(t) + ψ + µh)Ih(t)(2.4)

d

dt
Rh(t) = (θ + τu2(t))ρIh(t)− (κ+ µh)Rh(t)(2.5)

d

dt
Sv(t) = Λv − (λv(t) + µv + u3(t)v)Sv(t)(2.6)

d

dt
Ev(t) = λv(t)Sv − (α2 + µv + u3(t)v)Ev(t)(2.7)

d

dt
Iv(t) = α2Ev − (µv + u3(t)v)Iv(t)(2.8)

with λh(t) = βεφIv(t), λv(t) = λεφ(Ih(t) + ηRh(t)) and initial condition

Vh(0) = Vh0 > 0,Sh(0) = Sh0 > 0, Eh(0) = Eh0 > 0,Ih(0) = Ih0 > 0,(2.9)
Rh(0) = Rh0 > 0,Sv(0) = Sv0 > 0, Ev(0) = Ev0 > 0 and Iv(0) = Iv0 > 0

Susceptible individuals are recruited at a rate Λh where a proportion u1 ∈ [0, 1] of them is successfully
vaccinated at birth. Susceptible individuals acquire malaria through contact with infectious mosquitoes at a rate
λv(t). Due to waning effect, some vaccinated individuals will move to the exposed class at a rate bλv(t), where
(1 − b) ∈ [0, 1] is the efficacy of vaccine or they loose their immunity completely and move to the susceptible
class at a rate σ. Exposed individuals move to the infectious class at a rate α1. Individuals with malaria are treated
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under control, at a rate τu2(t), θ are individuals who recovered spontaneously. A proportion of them, ρ, moves to
the recovered class with temporary immunity and the other proportion moves to the susceptible class. Non treated
infected individuals die at a rate ψ. Recovered individual loose immunity at a rate κ and become susceptible again.
The term µh is the natural death rate.

Susceptible mosquitoes (Sv) are generated at a rate Λv and acquire malaria through contacts with infected
humans at a rate λv(t). Mosquitoes are assumed to suffer death due to natural causes at a rate µv . Newly infected
mosquitoes move to the exposed class (Ev), and later progress to the class of symptomatic mosquitoes (Iv) at a rate
α2. Mosquitoes deaths due to spraying at a rate u3(t)v. We also consider two forms of infection for mosquitoes.
Here λh(t) = βεφIv(t) and λv(t) = λεφ(Ih(t) + ηRh(t)), where β is the transmission probability per bite, ε is
the per capita biting rate of mosquitoes and φ is the contact rate of vector per human per unit time. The terms λ and
η are the probability for a vector to get infected by an infectious human and modificationn parameter, respectively.
Further, using Theorem 2 in Van den Driessche and Watmough [31], the following result is established.

3. Basic Results.. In this section, we study some basic results of the solution of the system (2.1-2.9) which
will be very useful to use into proof of stability and persistence results.

Theorem 3.1. Let R0 =

√
λε2φ2ΛhΛvα1α2β(k3 + ηθ)

µhµ2
vk1k2k3

with k1 = (α1 + µh), k2 = (θ + ψ + µh),

k3 = (κ+ µh) and k4 = (α2 + µv).

i IfR0 ≤ 1 then exist one disease free equilibrium point x0 =

(
Λh

µh
, 0, 0, 0,

Λv

µv
, 0, 0

)
.

ii IfR0 > 1 then exist disease free equilibrium point x0 and one equilibrium endemic

xe = (S?
h, E

?
h, I

?
h, R

?
h, S

?
v , E

?
v , I

?
v )

with

a0 = k4µv (λεφΛhα1(k3 + ηθ) + µv(k1k2k3 − κα1θ)) ,

b0 = µhµ
2
vk1k2k3k4(1−R2

0),

S?
h =

Λhk1k2k3(
µh −

b0
a0

)
k1k2k3 +

κα1θb0
a0

, E?
h =

Λhk1k2k3(
µh −

b0
a0

)
k1k2k3 +

κα1θb0
a0

I?h =
λ̃hΛhk3α1(

µh −
b0
a0

)
k1k2k3 +

κα1θb0
a0

R?
h =

θλ̃hΛhα1(
µh −

b0
a0

)
k1k2k3 +

κα1θb0
a0

S?
v =

Λv

(λεφ(I?h + ηR?
h) + µv)

E?
v =

λ̃vΛv

k4 (λεφ(I?h + ηR?
h) + µv)

I?v =
α2λ̃vΛv

k4µv (λεφ(I?h + ηR?
h) + µv)

Stability analytic of disease free equilibrium point [8, 32] given by Theorem 3.2.
Theorem 3.2. ifR0 < 1 then disease free equilibrium x0 locally asymptotically stable.
Besides to applying controls to reduce human population and mosquitoes infected with malaria, the cost aspect

caused by malaria also need to be minimized. Cost is made up of the cost of implementing controls, including the
average of the cost of implementing the vaccine (n), treatment (c) and spraying (d). Then, it is also covered the
average amount of loss incurred by malaria-infected human subpopulation (m).

In designing a dynamic cost function, it involves the time variable associated with the specified planning
period. It is assumed that the function of the controls is in the form of a quadratic cost function. If the established
planning period of the cost allocated to tackle malaria is [0, t1] and the nominal interest rate is q, then the cost
function model of epidemic malaria is a particular integral of the multiplication disconting factor with the sum
of the rate of change in implementing cost control and cost of losses borne by people infected with malaria, so
that [1, 6]:

J(u1, u2, u3) =

∫ t1

0

e−qt
(
mIh(t) + nu21(t) + cu22(t) + du23(t)

)
dt.(3.1)

Our purpose is to find an optimal control pair u?1(t), u?2(t) and u?3(t), such that

J(u?1(t), u?2(t), u?3(t)) = min
ω
J(u1, u2, u3)(3.2)
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where ω =
{

(u1, u2, u3) ∈ L1(0, t1)|u1 ∈ [0, 1],∀i = 1, 2, 3
}

are fixed nonnegative constants and (u1, u2, u3) ∈
L1(0, t1) means that u1, u2, u3 is Lebesgue measurable on (0, t1).

The Hamiltonian functionH with respect to u1, u2, u3 is defined as following

Hc = (aIh + nu21 + cu22 + du23)(3.3)
+msh ((1− u1)Λh + κRh − βεφIvSh + σVh − µhSh + (θ + τu2)(1− ρ)Ih)

+mEh
(βεφIvSh + bβεφIvVh − (α1 + µh)Eh)

+mIh (α1Eh − (θ + τu2 + ψ + µh)Ih) +mRh
((θ + τu2)ρIh − (κ+ µh)Rh)

+mVh
(u1Λh − (µh + σ + bβεφIv)Vh)

+mSv
(Λv − (βεφ(Sh + bVh) + µv + u3v)Sv)

+mEv
(βεφ(Sh + bVh)Sv − (α2 + µv + u3v)Ev)

+mIv (t) (α2Ev − (µv + u3v)Iv)

with costate equation is

dmVh

dt
= −σmSh

+ (σ + µh)mVh
+ (mVh

−mEh
)bβεφIv + qmVh

(3.4)

dmSh

dt
= (−βεφIv − µh)mSh

+ (βεφIv)mEh
+ qmSh

(3.5)

dmEh

dt
= (µh + α1)mEh

− α1mIh + qmEh(3.6)

dmIh

dt
= (θ + τu2 + ψ + µh)mIh − ρ(θ + τu2)mRh

− (1− ρ)(θ + τu2)mSh
+ (λεφSv)mSv

(3.7)

+ λεφSvmEv + qmIh

dmRh

dt
= −κmSh

+ (µh + κ)mRh
+ λεφηSv(mSv −mEv ) + qmRh

(3.8)

dmSv

dt
= (λεφ(Ih + ηRh) + µv)mSv

− λεφ(Ih + ηRh)mEv
+ qmSv

(3.9)

dmEv

dt
= (α2 + µv)mEv

− α2mIv + qmEv
(3.10)

dmIv

dt
= (βεφSh)mSh

−mEh
(βεφ(Sh + bVh)) + µvmIv + bβεφVhmVh

(3.11)

By applying Hamiltonian method, we can obtain the following necessary conditions that a pair of optimal
controls and corresponding states must satisfy.

Theorem 3.3. There exist optimal control (u?1(t), u?2(t), u?3(t)) that minimizes (3.1) with constrain (3.4)-(3.11)
is

u?1 = max

{
0,min

(
1,

(mSh
−mVh

)Λh

2n

)}
,

u?2 = max

{
0,min

(
1,
τ(mIh − ρmRh

− (1− ρ)mSh
)Ih

2c

)}
,

u?3 = max

{
0,min

(
1,

(mSv
Sv +mEv

Ev +mIvIv)v

2d

)}
,

with mVh
(t),mSh

(t),mEh
(t),mIh(t),mRh

(t),mSv (t),mEv (t) and mIv (t) is solution of equation (18) – (25)
that transversal condition mVh

(t1) = mSh
(t1) = mEh

(t1) = mIh(t1) = mRh
(t1) = mSv

(t1) = mEv
(t1) =

mIv (t1) = 0
The following will be simulated about the epidemic models with control malaria vaccination and treatment of

human and mosquito spraying. To determine how much the influence of the controls provided in reducing human
subpopulations and malaria-infected mosquitoes, the graph of the simulation consists of 4 graphs, namely:

i using vaccination (u1) without insecticide spraying (u3 = 0) and no treatment of the symptomatic hu-
mans (u2 = 0),

ii treating the symptomatic humans (u2) without using insecticide spraying (u3 = 0) and no vaccination
(u1 = 0),

iii using insecticide spraying (u3) without vaccination (u1 = 0) and no treatment of the symptomatic hu-
mans (u2 = 0),

iv using all three control measures (u1, u2, u3).
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TABLE 3.1
Description of Variables and Parameters of the Malaria Model [18, 22]

Notation Value Notation Value
Λh 99/ day θ 0.005
µh 0.0000421 /day Λv 890 /day
λ 0.0057233 µv 0.05 /day
α2 0.0556 /day η 0.001
κ 0.7902 /day b 0.03
ψ 0.02 /day σ 0.005 /day
α1 0.0588 /day C US$ 500
α2 0.0556 /day D US$ 50
v 0.6 τ 0.7
m US$ 150 ρ 0.023 /day
n US$ 100 v 0.6
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FIGURE 3.1. Dynamical behavior when u1 6= 0, u2 = u3 = 0 for (a) infected human population (b) infected mosquitoes population,
where the straight line indicates for dynamic with vaccination and the dashed line without vaccination control.
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FIGURE 3.2. Dynamical behavior when u2 6= 0, u1 = u3 = 0 for (a) infected human population (b) infected mosquitoes population,
where the straight line indicates for dynamic with treatment and the dashed line without treatment control.

Furthermore, simulation results obtained from the graph with Forward-Backward Sweep Runge-Kutta [2]
showing the relation number of mosquitoes susceptible subpopulations.

In Figure 3.1-3.3 shows that the number of humans and mosquitoes infected by malaria that is applying one of
the control fewer than the number of humans and mosquitoes infected by malaria without control. This indicates
that by applying one of the models of epidemic malaria control can reduce the number of infected humans and
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mosquitoes in malaria epidemic models without control.
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FIGURE 3.3. Dynamical behavior when u3 6= 0, u1 = u2 = 0 for (a) infected human population (b) infected mosquitoes population,
where the straight line indicates for dynamic with spraying and the dashed line without spraying.

In Figure 3.4 shows that the number of humans and mosquitoes infected by malaria that applying three controls
at once fewer than the number of humans and mosquitoes infected with malaria without control even with one
or two controls are applied. This indicates that the results of numerical simulation shows that by applying the
three controls at once, namely vaccination, treatment and spraying are more optimal to reduce the number of
subpopulations of human and malaria-infected mosquitoes.
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FIGURE 3.4. Dynamical behavior for (a) infected human population (b) infected mosquitoes population; blue color straight line indicates
behavior when u1 6= 0 and u2 6= 0; green color straight line indicates behavior when u1 6= 0 and u3 6= 0; red color straight line indicates
behavior when u2 6= 0 and u3 6= 0; black color straight line indicates behavior when u1 6= 0, u2 6= 0, and u3 6= 0

4. Conclusions. In this paper discussed the model of malaria epidemics involving vaccination and treatment
of the human population as well as spraying the mosquito population. By determining the number base reproduc-
tion (R0 ), the existence and the stability of the equilibrium point of malaria epidemic models without control can
be analyzed. Furthermore, when R0 < 1 indicates that the incidence of malaria in the area of malaria will be lost
for a long time.

The next discussion is to determine the optimal control of epidemic malaria models and minimize the cost of
implementing controls. Numerical simulation results indicate that the effect of control given to the endemic and
non-endemic malaria can reduce the number of subpopulations of human and malaria-infected mosquitoes.

In this paper, the controls that applied are vaccination and treatment of human and mosquito spraying. Then
the stability of the equilibrium point that studied is the local stability of the disease-free equilibrium point. This re-
search can be deeper by examining the global stability of disease-free equilibrium and endemic malaria in epidemic
models and apply other forms of such control that can reduce human subpopulations and mosquitoes infected with
malaria near to zero in malaria endemic areas.
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